| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zncyg.y |
|- Y = ( Z/nZ ` N ) |
| 2 |
|
zndvds.2 |
|- L = ( ZRHom ` Y ) |
| 3 |
|
eqcom |
|- ( ( L ` A ) = ( L ` B ) <-> ( L ` B ) = ( L ` A ) ) |
| 4 |
|
eqid |
|- ( RSpan ` ZZring ) = ( RSpan ` ZZring ) |
| 5 |
|
eqid |
|- ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) = ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) |
| 6 |
4 5 1 2
|
znzrhval |
|- ( ( N e. NN0 /\ B e. ZZ ) -> ( L ` B ) = [ B ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
| 7 |
6
|
3adant2 |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( L ` B ) = [ B ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
| 8 |
4 5 1 2
|
znzrhval |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( L ` A ) = [ A ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
| 9 |
8
|
3adant3 |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( L ` A ) = [ A ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
| 10 |
7 9
|
eqeq12d |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( L ` B ) = ( L ` A ) <-> [ B ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) = [ A ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
| 11 |
|
zringring |
|- ZZring e. Ring |
| 12 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> N e. ZZ ) |
| 14 |
13
|
snssd |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> { N } C_ ZZ ) |
| 15 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 16 |
|
eqid |
|- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
| 17 |
4 15 16
|
rspcl |
|- ( ( ZZring e. Ring /\ { N } C_ ZZ ) -> ( ( RSpan ` ZZring ) ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 18 |
11 14 17
|
sylancr |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( RSpan ` ZZring ) ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 19 |
16
|
lidlsubg |
|- ( ( ZZring e. Ring /\ ( ( RSpan ` ZZring ) ` { N } ) e. ( LIdeal ` ZZring ) ) -> ( ( RSpan ` ZZring ) ` { N } ) e. ( SubGrp ` ZZring ) ) |
| 20 |
11 18 19
|
sylancr |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( RSpan ` ZZring ) ` { N } ) e. ( SubGrp ` ZZring ) ) |
| 21 |
15 5
|
eqger |
|- ( ( ( RSpan ` ZZring ) ` { N } ) e. ( SubGrp ` ZZring ) -> ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) Er ZZ ) |
| 22 |
20 21
|
syl |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) Er ZZ ) |
| 23 |
|
simp3 |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> B e. ZZ ) |
| 24 |
22 23
|
erth |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( B ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) A <-> [ B ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) = [ A ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
| 25 |
|
zringabl |
|- ZZring e. Abel |
| 26 |
15 16
|
lidlss |
|- ( ( ( RSpan ` ZZring ) ` { N } ) e. ( LIdeal ` ZZring ) -> ( ( RSpan ` ZZring ) ` { N } ) C_ ZZ ) |
| 27 |
18 26
|
syl |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( RSpan ` ZZring ) ` { N } ) C_ ZZ ) |
| 28 |
|
eqid |
|- ( -g ` ZZring ) = ( -g ` ZZring ) |
| 29 |
15 28 5
|
eqgabl |
|- ( ( ZZring e. Abel /\ ( ( RSpan ` ZZring ) ` { N } ) C_ ZZ ) -> ( B ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) A <-> ( B e. ZZ /\ A e. ZZ /\ ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
| 30 |
25 27 29
|
sylancr |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( B ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) A <-> ( B e. ZZ /\ A e. ZZ /\ ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
| 31 |
|
simp2 |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
| 32 |
23 31
|
jca |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( B e. ZZ /\ A e. ZZ ) ) |
| 33 |
32
|
biantrurd |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) <-> ( ( B e. ZZ /\ A e. ZZ ) /\ ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
| 34 |
|
df-3an |
|- ( ( B e. ZZ /\ A e. ZZ /\ ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) ) <-> ( ( B e. ZZ /\ A e. ZZ ) /\ ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) ) ) |
| 35 |
33 34
|
bitr4di |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) <-> ( B e. ZZ /\ A e. ZZ /\ ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
| 36 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
| 37 |
|
subrgsubg |
|- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) ) |
| 38 |
36 37
|
mp1i |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ZZ e. ( SubGrp ` CCfld ) ) |
| 39 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
| 40 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
| 41 |
39 40 28
|
subgsub |
|- ( ( ZZ e. ( SubGrp ` CCfld ) /\ A e. ZZ /\ B e. ZZ ) -> ( A - B ) = ( A ( -g ` ZZring ) B ) ) |
| 42 |
38 41
|
syld3an1 |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( A - B ) = ( A ( -g ` ZZring ) B ) ) |
| 43 |
42
|
eqcomd |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( A ( -g ` ZZring ) B ) = ( A - B ) ) |
| 44 |
|
dvdsrzring |
|- || = ( ||r ` ZZring ) |
| 45 |
15 4 44
|
rspsn |
|- ( ( ZZring e. Ring /\ N e. ZZ ) -> ( ( RSpan ` ZZring ) ` { N } ) = { x | N || x } ) |
| 46 |
11 13 45
|
sylancr |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( RSpan ` ZZring ) ` { N } ) = { x | N || x } ) |
| 47 |
43 46
|
eleq12d |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) <-> ( A - B ) e. { x | N || x } ) ) |
| 48 |
|
ovex |
|- ( A - B ) e. _V |
| 49 |
|
breq2 |
|- ( x = ( A - B ) -> ( N || x <-> N || ( A - B ) ) ) |
| 50 |
48 49
|
elab |
|- ( ( A - B ) e. { x | N || x } <-> N || ( A - B ) ) |
| 51 |
47 50
|
bitrdi |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( A ( -g ` ZZring ) B ) e. ( ( RSpan ` ZZring ) ` { N } ) <-> N || ( A - B ) ) ) |
| 52 |
30 35 51
|
3bitr2d |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( B ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) A <-> N || ( A - B ) ) ) |
| 53 |
10 24 52
|
3bitr2d |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( L ` B ) = ( L ` A ) <-> N || ( A - B ) ) ) |
| 54 |
3 53
|
bitrid |
|- ( ( N e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( L ` A ) = ( L ` B ) <-> N || ( A - B ) ) ) |