Step |
Hyp |
Ref |
Expression |
1 |
|
zncyg.y |
|- Y = ( Z/nZ ` N ) |
2 |
|
zndvds.2 |
|- L = ( ZRHom ` Y ) |
3 |
|
zndvds0.3 |
|- .0. = ( 0g ` Y ) |
4 |
|
0z |
|- 0 e. ZZ |
5 |
1 2
|
zndvds |
|- ( ( N e. NN0 /\ A e. ZZ /\ 0 e. ZZ ) -> ( ( L ` A ) = ( L ` 0 ) <-> N || ( A - 0 ) ) ) |
6 |
4 5
|
mp3an3 |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) = ( L ` 0 ) <-> N || ( A - 0 ) ) ) |
7 |
1
|
zncrng |
|- ( N e. NN0 -> Y e. CRing ) |
8 |
7
|
adantr |
|- ( ( N e. NN0 /\ A e. ZZ ) -> Y e. CRing ) |
9 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
10 |
2
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
11 |
8 9 10
|
3syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> L e. ( ZZring RingHom Y ) ) |
12 |
|
rhmghm |
|- ( L e. ( ZZring RingHom Y ) -> L e. ( ZZring GrpHom Y ) ) |
13 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
14 |
13 3
|
ghmid |
|- ( L e. ( ZZring GrpHom Y ) -> ( L ` 0 ) = .0. ) |
15 |
11 12 14
|
3syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( L ` 0 ) = .0. ) |
16 |
15
|
eqeq2d |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) = ( L ` 0 ) <-> ( L ` A ) = .0. ) ) |
17 |
|
simpr |
|- ( ( N e. NN0 /\ A e. ZZ ) -> A e. ZZ ) |
18 |
17
|
zcnd |
|- ( ( N e. NN0 /\ A e. ZZ ) -> A e. CC ) |
19 |
18
|
subid1d |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( A - 0 ) = A ) |
20 |
19
|
breq2d |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( N || ( A - 0 ) <-> N || A ) ) |
21 |
6 16 20
|
3bitr3d |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) = .0. <-> N || A ) ) |