Metamath Proof Explorer


Theorem znegcl

Description: Closure law for negative integers. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion znegcl
|- ( N e. ZZ -> -u N e. ZZ )

Proof

Step Hyp Ref Expression
1 elz
 |-  ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) )
2 negeq
 |-  ( N = 0 -> -u N = -u 0 )
3 neg0
 |-  -u 0 = 0
4 2 3 eqtrdi
 |-  ( N = 0 -> -u N = 0 )
5 0z
 |-  0 e. ZZ
6 4 5 eqeltrdi
 |-  ( N = 0 -> -u N e. ZZ )
7 nnnegz
 |-  ( N e. NN -> -u N e. ZZ )
8 nnz
 |-  ( -u N e. NN -> -u N e. ZZ )
9 6 7 8 3jaoi
 |-  ( ( N = 0 \/ N e. NN \/ -u N e. NN ) -> -u N e. ZZ )
10 1 9 simplbiim
 |-  ( N e. ZZ -> -u N e. ZZ )