Description: Closure law for negative integers. (Contributed by NM, 9-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
|
| 2 | negeq | |- ( N = 0 -> -u N = -u 0 ) |
|
| 3 | neg0 | |- -u 0 = 0 |
|
| 4 | 2 3 | eqtrdi | |- ( N = 0 -> -u N = 0 ) |
| 5 | 0z | |- 0 e. ZZ |
|
| 6 | 4 5 | eqeltrdi | |- ( N = 0 -> -u N e. ZZ ) |
| 7 | nnnegz | |- ( N e. NN -> -u N e. ZZ ) |
|
| 8 | nnz | |- ( -u N e. NN -> -u N e. ZZ ) |
|
| 9 | 6 7 8 | 3jaoi | |- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) -> -u N e. ZZ ) |
| 10 | 1 9 | simplbiim | |- ( N e. ZZ -> -u N e. ZZ ) |