Description: A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | znegclb | |- ( A e. CC -> ( A e. ZZ <-> -u A e. ZZ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl | |- ( A e. ZZ -> -u A e. ZZ ) |
|
2 | znegcl | |- ( -u A e. ZZ -> -u -u A e. ZZ ) |
|
3 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
4 | 3 | eleq1d | |- ( A e. CC -> ( -u -u A e. ZZ <-> A e. ZZ ) ) |
5 | 2 4 | syl5ib | |- ( A e. CC -> ( -u A e. ZZ -> A e. ZZ ) ) |
6 | 1 5 | impbid2 | |- ( A e. CC -> ( A e. ZZ <-> -u A e. ZZ ) ) |