Metamath Proof Explorer


Theorem znegcld

Description: Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis zred.1
|- ( ph -> A e. ZZ )
Assertion znegcld
|- ( ph -> -u A e. ZZ )

Proof

Step Hyp Ref Expression
1 zred.1
 |-  ( ph -> A e. ZZ )
2 znegcl
 |-  ( A e. ZZ -> -u A e. ZZ )
3 1 2 syl
 |-  ( ph -> -u A e. ZZ )