Metamath Proof Explorer


Theorem znfi

Description: The Z/nZ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses zntos.y
|- Y = ( Z/nZ ` N )
znhash.1
|- B = ( Base ` Y )
Assertion znfi
|- ( N e. NN -> B e. Fin )

Proof

Step Hyp Ref Expression
1 zntos.y
 |-  Y = ( Z/nZ ` N )
2 znhash.1
 |-  B = ( Base ` Y )
3 1 2 znhash
 |-  ( N e. NN -> ( # ` B ) = N )
4 nnnn0
 |-  ( N e. NN -> N e. NN0 )
5 3 4 eqeltrd
 |-  ( N e. NN -> ( # ` B ) e. NN0 )
6 2 fvexi
 |-  B e. _V
7 hashclb
 |-  ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) )
8 6 7 ax-mp
 |-  ( B e. Fin <-> ( # ` B ) e. NN0 )
9 5 8 sylibr
 |-  ( N e. NN -> B e. Fin )