| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zntos.y |  |-  Y = ( Z/nZ ` N ) | 
						
							| 2 |  | znhash.1 |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 4 |  | eqid |  |-  ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) = ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) | 
						
							| 5 |  | eqid |  |-  if ( N = 0 , ZZ , ( 0 ..^ N ) ) = if ( N = 0 , ZZ , ( 0 ..^ N ) ) | 
						
							| 6 | 1 2 4 5 | znf1o |  |-  ( N e. NN0 -> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> B ) | 
						
							| 7 | 3 6 | syl |  |-  ( N e. NN -> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> B ) | 
						
							| 8 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 9 |  | ifnefalse |  |-  ( N =/= 0 -> if ( N = 0 , ZZ , ( 0 ..^ N ) ) = ( 0 ..^ N ) ) | 
						
							| 10 |  | f1oeq2 |  |-  ( if ( N = 0 , ZZ , ( 0 ..^ N ) ) = ( 0 ..^ N ) -> ( ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> B <-> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : ( 0 ..^ N ) -1-1-onto-> B ) ) | 
						
							| 11 | 8 9 10 | 3syl |  |-  ( N e. NN -> ( ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> B <-> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : ( 0 ..^ N ) -1-1-onto-> B ) ) | 
						
							| 12 | 7 11 | mpbid |  |-  ( N e. NN -> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : ( 0 ..^ N ) -1-1-onto-> B ) | 
						
							| 13 |  | ovex |  |-  ( 0 ..^ N ) e. _V | 
						
							| 14 | 13 | f1oen |  |-  ( ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : ( 0 ..^ N ) -1-1-onto-> B -> ( 0 ..^ N ) ~~ B ) | 
						
							| 15 |  | ensym |  |-  ( ( 0 ..^ N ) ~~ B -> B ~~ ( 0 ..^ N ) ) | 
						
							| 16 |  | hasheni |  |-  ( B ~~ ( 0 ..^ N ) -> ( # ` B ) = ( # ` ( 0 ..^ N ) ) ) | 
						
							| 17 | 12 14 15 16 | 4syl |  |-  ( N e. NN -> ( # ` B ) = ( # ` ( 0 ..^ N ) ) ) | 
						
							| 18 |  | hashfzo0 |  |-  ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) | 
						
							| 19 | 3 18 | syl |  |-  ( N e. NN -> ( # ` ( 0 ..^ N ) ) = N ) | 
						
							| 20 | 17 19 | eqtrd |  |-  ( N e. NN -> ( # ` B ) = N ) |