| Step | Hyp | Ref | Expression | 
						
							| 1 |  | znval.s |  |-  S = ( RSpan ` ZZring ) | 
						
							| 2 |  | znval.u |  |-  U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) | 
						
							| 3 |  | znval.y |  |-  Y = ( Z/nZ ` N ) | 
						
							| 4 |  | znval.f |  |-  F = ( ( ZRHom ` U ) |` W ) | 
						
							| 5 |  | znval.w |  |-  W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) | 
						
							| 6 |  | znle.l |  |-  .<_ = ( le ` Y ) | 
						
							| 7 |  | eqid |  |-  ( ( F o. <_ ) o. `' F ) = ( ( F o. <_ ) o. `' F ) | 
						
							| 8 | 1 2 3 4 5 7 | znval |  |-  ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( N e. NN0 -> ( le ` Y ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) ) | 
						
							| 10 | 2 | ovexi |  |-  U e. _V | 
						
							| 11 |  | fvex |  |-  ( ZRHom ` U ) e. _V | 
						
							| 12 | 11 | resex |  |-  ( ( ZRHom ` U ) |` W ) e. _V | 
						
							| 13 | 4 12 | eqeltri |  |-  F e. _V | 
						
							| 14 |  | xrex |  |-  RR* e. _V | 
						
							| 15 | 14 14 | xpex |  |-  ( RR* X. RR* ) e. _V | 
						
							| 16 |  | lerelxr |  |-  <_ C_ ( RR* X. RR* ) | 
						
							| 17 | 15 16 | ssexi |  |-  <_ e. _V | 
						
							| 18 | 13 17 | coex |  |-  ( F o. <_ ) e. _V | 
						
							| 19 | 13 | cnvex |  |-  `' F e. _V | 
						
							| 20 | 18 19 | coex |  |-  ( ( F o. <_ ) o. `' F ) e. _V | 
						
							| 21 |  | pleid |  |-  le = Slot ( le ` ndx ) | 
						
							| 22 | 21 | setsid |  |-  ( ( U e. _V /\ ( ( F o. <_ ) o. `' F ) e. _V ) -> ( ( F o. <_ ) o. `' F ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) ) | 
						
							| 23 | 10 20 22 | mp2an |  |-  ( ( F o. <_ ) o. `' F ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) | 
						
							| 24 | 9 6 23 | 3eqtr4g |  |-  ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) |