Step |
Hyp |
Ref |
Expression |
1 |
|
znle2.y |
|- Y = ( Z/nZ ` N ) |
2 |
|
znle2.f |
|- F = ( ( ZRHom ` Y ) |` W ) |
3 |
|
znle2.w |
|- W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
4 |
|
znle2.l |
|- .<_ = ( le ` Y ) |
5 |
|
eqid |
|- ( RSpan ` ZZring ) = ( RSpan ` ZZring ) |
6 |
|
eqid |
|- ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
7 |
|
eqid |
|- ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) = ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) |
8 |
5 6 1 7 3 4
|
znle |
|- ( N e. NN0 -> .<_ = ( ( ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) o. <_ ) o. `' ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) ) ) |
9 |
5 6 1
|
znzrh |
|- ( N e. NN0 -> ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( ZRHom ` Y ) ) |
10 |
9
|
reseq1d |
|- ( N e. NN0 -> ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) = ( ( ZRHom ` Y ) |` W ) ) |
11 |
10 2
|
eqtr4di |
|- ( N e. NN0 -> ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) = F ) |
12 |
11
|
coeq1d |
|- ( N e. NN0 -> ( ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) o. <_ ) = ( F o. <_ ) ) |
13 |
11
|
cnveqd |
|- ( N e. NN0 -> `' ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) = `' F ) |
14 |
12 13
|
coeq12d |
|- ( N e. NN0 -> ( ( ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) o. <_ ) o. `' ( ( ZRHom ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |` W ) ) = ( ( F o. <_ ) o. `' F ) ) |
15 |
8 14
|
eqtrd |
|- ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) |