Description: The set n ZZ is an ideal in ZZ . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | znval.s | |- S = ( RSpan ` ZZring ) |
|
| Assertion | znlidl | |- ( N e. ZZ -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval.s | |- S = ( RSpan ` ZZring ) |
|
| 2 | zringring | |- ZZring e. Ring |
|
| 3 | snssi | |- ( N e. ZZ -> { N } C_ ZZ ) |
|
| 4 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 5 | eqid | |- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
|
| 6 | 1 4 5 | rspcl | |- ( ( ZZring e. Ring /\ { N } C_ ZZ ) -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 7 | 2 3 6 | sylancr | |- ( N e. ZZ -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |