Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
|- _om e. On |
2 |
|
nnenom |
|- NN ~~ _om |
3 |
2
|
ensymi |
|- _om ~~ NN |
4 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ NN ) -> NN e. dom card ) |
5 |
1 3 4
|
mp2an |
|- NN e. dom card |
6 |
|
xpnum |
|- ( ( NN e. dom card /\ NN e. dom card ) -> ( NN X. NN ) e. dom card ) |
7 |
5 5 6
|
mp2an |
|- ( NN X. NN ) e. dom card |
8 |
|
subf |
|- - : ( CC X. CC ) --> CC |
9 |
|
ffun |
|- ( - : ( CC X. CC ) --> CC -> Fun - ) |
10 |
8 9
|
ax-mp |
|- Fun - |
11 |
|
nnsscn |
|- NN C_ CC |
12 |
|
xpss12 |
|- ( ( NN C_ CC /\ NN C_ CC ) -> ( NN X. NN ) C_ ( CC X. CC ) ) |
13 |
11 11 12
|
mp2an |
|- ( NN X. NN ) C_ ( CC X. CC ) |
14 |
8
|
fdmi |
|- dom - = ( CC X. CC ) |
15 |
13 14
|
sseqtrri |
|- ( NN X. NN ) C_ dom - |
16 |
|
fores |
|- ( ( Fun - /\ ( NN X. NN ) C_ dom - ) -> ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ( - " ( NN X. NN ) ) ) |
17 |
10 15 16
|
mp2an |
|- ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ( - " ( NN X. NN ) ) |
18 |
|
dfz2 |
|- ZZ = ( - " ( NN X. NN ) ) |
19 |
|
foeq3 |
|- ( ZZ = ( - " ( NN X. NN ) ) -> ( ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ZZ <-> ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ( - " ( NN X. NN ) ) ) ) |
20 |
18 19
|
ax-mp |
|- ( ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ZZ <-> ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ( - " ( NN X. NN ) ) ) |
21 |
17 20
|
mpbir |
|- ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ZZ |
22 |
|
fodomnum |
|- ( ( NN X. NN ) e. dom card -> ( ( - |` ( NN X. NN ) ) : ( NN X. NN ) -onto-> ZZ -> ZZ ~<_ ( NN X. NN ) ) ) |
23 |
7 21 22
|
mp2 |
|- ZZ ~<_ ( NN X. NN ) |
24 |
|
xpnnen |
|- ( NN X. NN ) ~~ NN |
25 |
|
domentr |
|- ( ( ZZ ~<_ ( NN X. NN ) /\ ( NN X. NN ) ~~ NN ) -> ZZ ~<_ NN ) |
26 |
23 24 25
|
mp2an |
|- ZZ ~<_ NN |
27 |
|
zex |
|- ZZ e. _V |
28 |
|
nnssz |
|- NN C_ ZZ |
29 |
|
ssdomg |
|- ( ZZ e. _V -> ( NN C_ ZZ -> NN ~<_ ZZ ) ) |
30 |
27 28 29
|
mp2 |
|- NN ~<_ ZZ |
31 |
|
sbth |
|- ( ( ZZ ~<_ NN /\ NN ~<_ ZZ ) -> ZZ ~~ NN ) |
32 |
26 30 31
|
mp2an |
|- ZZ ~~ NN |