Metamath Proof Explorer


Theorem znnn0nn

Description: The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion znnn0nn
|- ( ( N e. ZZ /\ -. N e. NN0 ) -> -u N e. NN )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> N e. ZZ )
2 1 znegcld
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> -u N e. ZZ )
3 elznn
 |-  ( -u N e. ZZ <-> ( -u N e. RR /\ ( -u N e. NN \/ -u -u N e. NN0 ) ) )
4 2 3 sylib
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> ( -u N e. RR /\ ( -u N e. NN \/ -u -u N e. NN0 ) ) )
5 4 simprd
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> ( -u N e. NN \/ -u -u N e. NN0 ) )
6 zcn
 |-  ( N e. ZZ -> N e. CC )
7 6 adantr
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> N e. CC )
8 7 negnegd
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> -u -u N = N )
9 simpr
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> -. N e. NN0 )
10 8 9 eqneltrd
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> -. -u -u N e. NN0 )
11 pm2.24
 |-  ( -u -u N e. NN0 -> ( -. -u -u N e. NN0 -> -u N e. NN ) )
12 11 jao1i
 |-  ( ( -u N e. NN \/ -u -u N e. NN0 ) -> ( -. -u -u N e. NN0 -> -u N e. NN ) )
13 5 10 12 sylc
 |-  ( ( N e. ZZ /\ -. N e. NN0 ) -> -u N e. NN )