Metamath Proof Explorer


Theorem znnnlt1

Description: An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005)

Ref Expression
Assertion znnnlt1
|- ( N e. ZZ -> ( -. N e. NN <-> N < 1 ) )

Proof

Step Hyp Ref Expression
1 elnnz1
 |-  ( N e. NN <-> ( N e. ZZ /\ 1 <_ N ) )
2 1 baib
 |-  ( N e. ZZ -> ( N e. NN <-> 1 <_ N ) )
3 2 notbid
 |-  ( N e. ZZ -> ( -. N e. NN <-> -. 1 <_ N ) )
4 zre
 |-  ( N e. ZZ -> N e. RR )
5 1re
 |-  1 e. RR
6 ltnle
 |-  ( ( N e. RR /\ 1 e. RR ) -> ( N < 1 <-> -. 1 <_ N ) )
7 4 5 6 sylancl
 |-  ( N e. ZZ -> ( N < 1 <-> -. 1 <_ N ) )
8 3 7 bitr4d
 |-  ( N e. ZZ -> ( -. N e. NN <-> N < 1 ) )