Description: An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | znnnlt1 | |- ( N e. ZZ -> ( -. N e. NN <-> N < 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnz1 | |- ( N e. NN <-> ( N e. ZZ /\ 1 <_ N ) ) |
|
2 | 1 | baib | |- ( N e. ZZ -> ( N e. NN <-> 1 <_ N ) ) |
3 | 2 | notbid | |- ( N e. ZZ -> ( -. N e. NN <-> -. 1 <_ N ) ) |
4 | zre | |- ( N e. ZZ -> N e. RR ) |
|
5 | 1re | |- 1 e. RR |
|
6 | ltnle | |- ( ( N e. RR /\ 1 e. RR ) -> ( N < 1 <-> -. 1 <_ N ) ) |
|
7 | 4 5 6 | sylancl | |- ( N e. ZZ -> ( N < 1 <-> -. 1 <_ N ) ) |
8 | 3 7 | bitr4d | |- ( N e. ZZ -> ( -. N e. NN <-> N < 1 ) ) |