| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 2 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 3 |
|
posdif |
|- ( ( M e. RR /\ N e. RR ) -> ( M < N <-> 0 < ( N - M ) ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> 0 < ( N - M ) ) ) |
| 5 |
|
zsubcl |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ ) |
| 6 |
5
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N - M ) e. ZZ ) |
| 7 |
6
|
biantrurd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 < ( N - M ) <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) ) ) |
| 8 |
4 7
|
bitrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) ) ) |
| 9 |
|
elnnz |
|- ( ( N - M ) e. NN <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) ) |
| 10 |
8 9
|
bitr4di |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |