Metamath Proof Explorer


Theorem znq

Description: The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion znq
|- ( ( A e. ZZ /\ B e. NN ) -> ( A / B ) e. QQ )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( A / B ) = ( A / B )
2 rspceov
 |-  ( ( A e. ZZ /\ B e. NN /\ ( A / B ) = ( A / B ) ) -> E. x e. ZZ E. y e. NN ( A / B ) = ( x / y ) )
3 1 2 mp3an3
 |-  ( ( A e. ZZ /\ B e. NN ) -> E. x e. ZZ E. y e. NN ( A / B ) = ( x / y ) )
4 elq
 |-  ( ( A / B ) e. QQ <-> E. x e. ZZ E. y e. NN ( A / B ) = ( x / y ) )
5 3 4 sylibr
 |-  ( ( A e. ZZ /\ B e. NN ) -> ( A / B ) e. QQ )