Step |
Hyp |
Ref |
Expression |
1 |
|
znsqcld.1 |
|- ( ph -> N e. ZZ ) |
2 |
|
znsqcld.2 |
|- ( ph -> N =/= 0 ) |
3 |
1
|
zcnd |
|- ( ph -> N e. CC ) |
4 |
|
2z |
|- 2 e. ZZ |
5 |
4
|
a1i |
|- ( ph -> 2 e. ZZ ) |
6 |
3 2 5
|
expne0d |
|- ( ph -> ( N ^ 2 ) =/= 0 ) |
7 |
6
|
neneqd |
|- ( ph -> -. ( N ^ 2 ) = 0 ) |
8 |
|
zsqcl2 |
|- ( N e. ZZ -> ( N ^ 2 ) e. NN0 ) |
9 |
1 8
|
syl |
|- ( ph -> ( N ^ 2 ) e. NN0 ) |
10 |
|
elnn0 |
|- ( ( N ^ 2 ) e. NN0 <-> ( ( N ^ 2 ) e. NN \/ ( N ^ 2 ) = 0 ) ) |
11 |
9 10
|
sylib |
|- ( ph -> ( ( N ^ 2 ) e. NN \/ ( N ^ 2 ) = 0 ) ) |
12 |
11
|
orcomd |
|- ( ph -> ( ( N ^ 2 ) = 0 \/ ( N ^ 2 ) e. NN ) ) |
13 |
12
|
ord |
|- ( ph -> ( -. ( N ^ 2 ) = 0 -> ( N ^ 2 ) e. NN ) ) |
14 |
7 13
|
mpd |
|- ( ph -> ( N ^ 2 ) e. NN ) |