Metamath Proof Explorer


Theorem zntos

Description: The Z/nZ structure is a totally ordered set. (The order is not respected by the operations, except in the case N = 0 when it coincides with the ordering on ZZ .) (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis zntos.y
|- Y = ( Z/nZ ` N )
Assertion zntos
|- ( N e. NN0 -> Y e. Toset )

Proof

Step Hyp Ref Expression
1 zntos.y
 |-  Y = ( Z/nZ ` N )
2 eqid
 |-  ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) = ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) )
3 eqid
 |-  if ( N = 0 , ZZ , ( 0 ..^ N ) ) = if ( N = 0 , ZZ , ( 0 ..^ N ) )
4 eqid
 |-  ( le ` Y ) = ( le ` Y )
5 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
6 1 2 3 4 5 zntoslem
 |-  ( N e. NN0 -> Y e. Toset )