| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znchr.y |
|- Y = ( Z/nZ ` N ) |
| 2 |
|
znunit.u |
|- U = ( Unit ` Y ) |
| 3 |
|
znunit.l |
|- L = ( ZRHom ` Y ) |
| 4 |
1
|
zncrng |
|- ( N e. NN0 -> Y e. CRing ) |
| 5 |
4
|
adantr |
|- ( ( N e. NN0 /\ A e. ZZ ) -> Y e. CRing ) |
| 6 |
|
eqid |
|- ( 1r ` Y ) = ( 1r ` Y ) |
| 7 |
|
eqid |
|- ( ||r ` Y ) = ( ||r ` Y ) |
| 8 |
2 6 7
|
crngunit |
|- ( Y e. CRing -> ( ( L ` A ) e. U <-> ( L ` A ) ( ||r ` Y ) ( 1r ` Y ) ) ) |
| 9 |
5 8
|
syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) e. U <-> ( L ` A ) ( ||r ` Y ) ( 1r ` Y ) ) ) |
| 10 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 11 |
1 10 3
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Y ) ) |
| 12 |
11
|
adantr |
|- ( ( N e. NN0 /\ A e. ZZ ) -> L : ZZ -onto-> ( Base ` Y ) ) |
| 13 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Y ) -> L : ZZ --> ( Base ` Y ) ) |
| 14 |
12 13
|
syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> L : ZZ --> ( Base ` Y ) ) |
| 15 |
|
ffvelcdm |
|- ( ( L : ZZ --> ( Base ` Y ) /\ A e. ZZ ) -> ( L ` A ) e. ( Base ` Y ) ) |
| 16 |
14 15
|
sylancom |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( L ` A ) e. ( Base ` Y ) ) |
| 17 |
|
eqid |
|- ( .r ` Y ) = ( .r ` Y ) |
| 18 |
10 7 17
|
dvdsr2 |
|- ( ( L ` A ) e. ( Base ` Y ) -> ( ( L ` A ) ( ||r ` Y ) ( 1r ` Y ) <-> E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 19 |
16 18
|
syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) ( ||r ` Y ) ( 1r ` Y ) <-> E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 20 |
|
forn |
|- ( L : ZZ -onto-> ( Base ` Y ) -> ran L = ( Base ` Y ) ) |
| 21 |
12 20
|
syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ran L = ( Base ` Y ) ) |
| 22 |
21
|
rexeqdv |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. x e. ran L ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 23 |
|
ffn |
|- ( L : ZZ --> ( Base ` Y ) -> L Fn ZZ ) |
| 24 |
|
oveq1 |
|- ( x = ( L ` n ) -> ( x ( .r ` Y ) ( L ` A ) ) = ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) ) |
| 25 |
24
|
eqeq1d |
|- ( x = ( L ` n ) -> ( ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 26 |
25
|
rexrn |
|- ( L Fn ZZ -> ( E. x e. ran L ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. n e. ZZ ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 27 |
14 23 26
|
3syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. x e. ran L ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. n e. ZZ ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 28 |
22 27
|
bitr3d |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. n e. ZZ ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 29 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
| 30 |
5 29
|
syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> Y e. Ring ) |
| 31 |
3
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
| 32 |
30 31
|
syl |
|- ( ( N e. NN0 /\ A e. ZZ ) -> L e. ( ZZring RingHom Y ) ) |
| 33 |
32
|
adantr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> L e. ( ZZring RingHom Y ) ) |
| 34 |
|
simpr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> n e. ZZ ) |
| 35 |
|
simplr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> A e. ZZ ) |
| 36 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 37 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
| 38 |
36 37 17
|
rhmmul |
|- ( ( L e. ( ZZring RingHom Y ) /\ n e. ZZ /\ A e. ZZ ) -> ( L ` ( n x. A ) ) = ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) ) |
| 39 |
33 34 35 38
|
syl3anc |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( L ` ( n x. A ) ) = ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) ) |
| 40 |
30
|
adantr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> Y e. Ring ) |
| 41 |
3 6
|
zrh1 |
|- ( Y e. Ring -> ( L ` 1 ) = ( 1r ` Y ) ) |
| 42 |
40 41
|
syl |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( L ` 1 ) = ( 1r ` Y ) ) |
| 43 |
39 42
|
eqeq12d |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( ( L ` ( n x. A ) ) = ( L ` 1 ) <-> ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) ) ) |
| 44 |
|
simpll |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> N e. NN0 ) |
| 45 |
34 35
|
zmulcld |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( n x. A ) e. ZZ ) |
| 46 |
|
1zzd |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> 1 e. ZZ ) |
| 47 |
1 3
|
zndvds |
|- ( ( N e. NN0 /\ ( n x. A ) e. ZZ /\ 1 e. ZZ ) -> ( ( L ` ( n x. A ) ) = ( L ` 1 ) <-> N || ( ( n x. A ) - 1 ) ) ) |
| 48 |
44 45 46 47
|
syl3anc |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( ( L ` ( n x. A ) ) = ( L ` 1 ) <-> N || ( ( n x. A ) - 1 ) ) ) |
| 49 |
43 48
|
bitr3d |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> N || ( ( n x. A ) - 1 ) ) ) |
| 50 |
49
|
rexbidva |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. n e. ZZ ( ( L ` n ) ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> E. n e. ZZ N || ( ( n x. A ) - 1 ) ) ) |
| 51 |
|
simplr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> A e. ZZ ) |
| 52 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> N e. ZZ ) |
| 54 |
|
gcddvds |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( A gcd N ) || A /\ ( A gcd N ) || N ) ) |
| 55 |
51 53 54
|
syl2anc |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( A gcd N ) || A /\ ( A gcd N ) || N ) ) |
| 56 |
55
|
simpld |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || A ) |
| 57 |
51 53
|
gcdcld |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) e. NN0 ) |
| 58 |
57
|
nn0zd |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) e. ZZ ) |
| 59 |
34
|
adantrr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> n e. ZZ ) |
| 60 |
|
dvdsmultr2 |
|- ( ( ( A gcd N ) e. ZZ /\ n e. ZZ /\ A e. ZZ ) -> ( ( A gcd N ) || A -> ( A gcd N ) || ( n x. A ) ) ) |
| 61 |
58 59 51 60
|
syl3anc |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( A gcd N ) || A -> ( A gcd N ) || ( n x. A ) ) ) |
| 62 |
56 61
|
mpd |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || ( n x. A ) ) |
| 63 |
45
|
adantrr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( n x. A ) e. ZZ ) |
| 64 |
|
1zzd |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> 1 e. ZZ ) |
| 65 |
|
peano2zm |
|- ( ( n x. A ) e. ZZ -> ( ( n x. A ) - 1 ) e. ZZ ) |
| 66 |
63 65
|
syl |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( n x. A ) - 1 ) e. ZZ ) |
| 67 |
55
|
simprd |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || N ) |
| 68 |
|
simprr |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> N || ( ( n x. A ) - 1 ) ) |
| 69 |
58 53 66 67 68
|
dvdstrd |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || ( ( n x. A ) - 1 ) ) |
| 70 |
|
dvdssub2 |
|- ( ( ( ( A gcd N ) e. ZZ /\ ( n x. A ) e. ZZ /\ 1 e. ZZ ) /\ ( A gcd N ) || ( ( n x. A ) - 1 ) ) -> ( ( A gcd N ) || ( n x. A ) <-> ( A gcd N ) || 1 ) ) |
| 71 |
58 63 64 69 70
|
syl31anc |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( A gcd N ) || ( n x. A ) <-> ( A gcd N ) || 1 ) ) |
| 72 |
62 71
|
mpbid |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) || 1 ) |
| 73 |
|
dvds1 |
|- ( ( A gcd N ) e. NN0 -> ( ( A gcd N ) || 1 <-> ( A gcd N ) = 1 ) ) |
| 74 |
57 73
|
syl |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( ( A gcd N ) || 1 <-> ( A gcd N ) = 1 ) ) |
| 75 |
72 74
|
mpbid |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ ( n e. ZZ /\ N || ( ( n x. A ) - 1 ) ) ) -> ( A gcd N ) = 1 ) |
| 76 |
75
|
rexlimdvaa |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. n e. ZZ N || ( ( n x. A ) - 1 ) -> ( A gcd N ) = 1 ) ) |
| 77 |
|
simpr |
|- ( ( N e. NN0 /\ A e. ZZ ) -> A e. ZZ ) |
| 78 |
52
|
adantr |
|- ( ( N e. NN0 /\ A e. ZZ ) -> N e. ZZ ) |
| 79 |
|
bezout |
|- ( ( A e. ZZ /\ N e. ZZ ) -> E. n e. ZZ E. m e. ZZ ( A gcd N ) = ( ( A x. n ) + ( N x. m ) ) ) |
| 80 |
77 78 79
|
syl2anc |
|- ( ( N e. NN0 /\ A e. ZZ ) -> E. n e. ZZ E. m e. ZZ ( A gcd N ) = ( ( A x. n ) + ( N x. m ) ) ) |
| 81 |
|
eqeq1 |
|- ( ( A gcd N ) = 1 -> ( ( A gcd N ) = ( ( A x. n ) + ( N x. m ) ) <-> 1 = ( ( A x. n ) + ( N x. m ) ) ) ) |
| 82 |
81
|
2rexbidv |
|- ( ( A gcd N ) = 1 -> ( E. n e. ZZ E. m e. ZZ ( A gcd N ) = ( ( A x. n ) + ( N x. m ) ) <-> E. n e. ZZ E. m e. ZZ 1 = ( ( A x. n ) + ( N x. m ) ) ) ) |
| 83 |
80 82
|
syl5ibcom |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( A gcd N ) = 1 -> E. n e. ZZ E. m e. ZZ 1 = ( ( A x. n ) + ( N x. m ) ) ) ) |
| 84 |
52
|
ad3antrrr |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> N e. ZZ ) |
| 85 |
|
dvdsmul1 |
|- ( ( N e. ZZ /\ m e. ZZ ) -> N || ( N x. m ) ) |
| 86 |
84 85
|
sylancom |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> N || ( N x. m ) ) |
| 87 |
|
zmulcl |
|- ( ( N e. ZZ /\ m e. ZZ ) -> ( N x. m ) e. ZZ ) |
| 88 |
84 87
|
sylancom |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( N x. m ) e. ZZ ) |
| 89 |
|
dvdsnegb |
|- ( ( N e. ZZ /\ ( N x. m ) e. ZZ ) -> ( N || ( N x. m ) <-> N || -u ( N x. m ) ) ) |
| 90 |
84 88 89
|
syl2anc |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( N || ( N x. m ) <-> N || -u ( N x. m ) ) ) |
| 91 |
86 90
|
mpbid |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> N || -u ( N x. m ) ) |
| 92 |
35
|
adantr |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> A e. ZZ ) |
| 93 |
92
|
zcnd |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> A e. CC ) |
| 94 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 95 |
94
|
ad2antlr |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> n e. CC ) |
| 96 |
93 95
|
mulcomd |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( A x. n ) = ( n x. A ) ) |
| 97 |
96
|
oveq1d |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( A x. n ) + ( N x. m ) ) = ( ( n x. A ) + ( N x. m ) ) ) |
| 98 |
95 93
|
mulcld |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( n x. A ) e. CC ) |
| 99 |
88
|
zcnd |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( N x. m ) e. CC ) |
| 100 |
98 99
|
subnegd |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( n x. A ) - -u ( N x. m ) ) = ( ( n x. A ) + ( N x. m ) ) ) |
| 101 |
97 100
|
eqtr4d |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( A x. n ) + ( N x. m ) ) = ( ( n x. A ) - -u ( N x. m ) ) ) |
| 102 |
101
|
oveq2d |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) = ( ( n x. A ) - ( ( n x. A ) - -u ( N x. m ) ) ) ) |
| 103 |
99
|
negcld |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> -u ( N x. m ) e. CC ) |
| 104 |
98 103
|
nncand |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( n x. A ) - ( ( n x. A ) - -u ( N x. m ) ) ) = -u ( N x. m ) ) |
| 105 |
102 104
|
eqtrd |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) = -u ( N x. m ) ) |
| 106 |
91 105
|
breqtrrd |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> N || ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) ) |
| 107 |
|
oveq2 |
|- ( 1 = ( ( A x. n ) + ( N x. m ) ) -> ( ( n x. A ) - 1 ) = ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) ) |
| 108 |
107
|
breq2d |
|- ( 1 = ( ( A x. n ) + ( N x. m ) ) -> ( N || ( ( n x. A ) - 1 ) <-> N || ( ( n x. A ) - ( ( A x. n ) + ( N x. m ) ) ) ) ) |
| 109 |
106 108
|
syl5ibrcom |
|- ( ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) /\ m e. ZZ ) -> ( 1 = ( ( A x. n ) + ( N x. m ) ) -> N || ( ( n x. A ) - 1 ) ) ) |
| 110 |
109
|
rexlimdva |
|- ( ( ( N e. NN0 /\ A e. ZZ ) /\ n e. ZZ ) -> ( E. m e. ZZ 1 = ( ( A x. n ) + ( N x. m ) ) -> N || ( ( n x. A ) - 1 ) ) ) |
| 111 |
110
|
reximdva |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. n e. ZZ E. m e. ZZ 1 = ( ( A x. n ) + ( N x. m ) ) -> E. n e. ZZ N || ( ( n x. A ) - 1 ) ) ) |
| 112 |
83 111
|
syld |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( A gcd N ) = 1 -> E. n e. ZZ N || ( ( n x. A ) - 1 ) ) ) |
| 113 |
76 112
|
impbid |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. n e. ZZ N || ( ( n x. A ) - 1 ) <-> ( A gcd N ) = 1 ) ) |
| 114 |
28 50 113
|
3bitrd |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( E. x e. ( Base ` Y ) ( x ( .r ` Y ) ( L ` A ) ) = ( 1r ` Y ) <-> ( A gcd N ) = 1 ) ) |
| 115 |
9 19 114
|
3bitrd |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( ( L ` A ) e. U <-> ( A gcd N ) = 1 ) ) |