Step |
Hyp |
Ref |
Expression |
1 |
|
znval2.s |
|- S = ( RSpan ` ZZring ) |
2 |
|
znval2.u |
|- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
3 |
|
znval2.y |
|- Y = ( Z/nZ ` N ) |
4 |
|
znval2.l |
|- .<_ = ( le ` Y ) |
5 |
|
eqid |
|- ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) = ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) |
6 |
|
eqid |
|- if ( N = 0 , ZZ , ( 0 ..^ N ) ) = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
7 |
|
eqid |
|- ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) = ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) |
8 |
1 2 3 5 6 7
|
znval |
|- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) ) |
9 |
1 2 3 5 6 4
|
znle |
|- ( N e. NN0 -> .<_ = ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) ) |
10 |
9
|
opeq2d |
|- ( N e. NN0 -> <. ( le ` ndx ) , .<_ >. = <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) |
11 |
10
|
oveq2d |
|- ( N e. NN0 -> ( U sSet <. ( le ` ndx ) , .<_ >. ) = ( U sSet <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) ) |
12 |
8 11
|
eqtr4d |
|- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , .<_ >. ) ) |