| Step | Hyp | Ref | Expression | 
						
							| 1 |  | znval2.s |  |-  S = ( RSpan ` ZZring ) | 
						
							| 2 |  | znval2.u |  |-  U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) | 
						
							| 3 |  | znval2.y |  |-  Y = ( Z/nZ ` N ) | 
						
							| 4 |  | znval2.l |  |-  .<_ = ( le ` Y ) | 
						
							| 5 |  | eqid |  |-  ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) = ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) | 
						
							| 6 |  | eqid |  |-  if ( N = 0 , ZZ , ( 0 ..^ N ) ) = if ( N = 0 , ZZ , ( 0 ..^ N ) ) | 
						
							| 7 |  | eqid |  |-  ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) = ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) | 
						
							| 8 | 1 2 3 5 6 7 | znval |  |-  ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) ) | 
						
							| 9 | 1 2 3 5 6 4 | znle |  |-  ( N e. NN0 -> .<_ = ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) ) | 
						
							| 10 | 9 | opeq2d |  |-  ( N e. NN0 -> <. ( le ` ndx ) , .<_ >. = <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) | 
						
							| 11 | 10 | oveq2d |  |-  ( N e. NN0 -> ( U sSet <. ( le ` ndx ) , .<_ >. ) = ( U sSet <. ( le ` ndx ) , ( ( ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) o. <_ ) o. `' ( ( ZRHom ` U ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) ) >. ) ) | 
						
							| 12 | 8 11 | eqtr4d |  |-  ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , .<_ >. ) ) |