| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znval2.s |
|- S = ( RSpan ` ZZring ) |
| 2 |
|
znval2.u |
|- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
| 3 |
|
znval2.y |
|- Y = ( Z/nZ ` N ) |
| 4 |
|
eqidd |
|- ( N e. NN0 -> ( Base ` U ) = ( Base ` U ) ) |
| 5 |
1 2 3
|
znbas2 |
|- ( N e. NN0 -> ( Base ` U ) = ( Base ` Y ) ) |
| 6 |
1 2 3
|
znadd |
|- ( N e. NN0 -> ( +g ` U ) = ( +g ` Y ) ) |
| 7 |
6
|
oveqdr |
|- ( ( N e. NN0 /\ ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) ) -> ( x ( +g ` U ) y ) = ( x ( +g ` Y ) y ) ) |
| 8 |
1 2 3
|
znmul |
|- ( N e. NN0 -> ( .r ` U ) = ( .r ` Y ) ) |
| 9 |
8
|
oveqdr |
|- ( ( N e. NN0 /\ ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) ) -> ( x ( .r ` U ) y ) = ( x ( .r ` Y ) y ) ) |
| 10 |
4 5 7 9
|
zrhpropd |
|- ( N e. NN0 -> ( ZRHom ` U ) = ( ZRHom ` Y ) ) |