Step |
Hyp |
Ref |
Expression |
1 |
|
znzrh2.s |
|- S = ( RSpan ` ZZring ) |
2 |
|
znzrh2.r |
|- .~ = ( ZZring ~QG ( S ` { N } ) ) |
3 |
|
znzrh2.y |
|- Y = ( Z/nZ ` N ) |
4 |
|
znzrh2.2 |
|- L = ( ZRHom ` Y ) |
5 |
|
zringring |
|- ZZring e. Ring |
6 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
7 |
1
|
znlidl |
|- ( N e. ZZ -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |
8 |
6 7
|
syl |
|- ( N e. NN0 -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |
9 |
2
|
oveq2i |
|- ( ZZring /s .~ ) = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
10 |
|
zringcrng |
|- ZZring e. CRing |
11 |
|
eqid |
|- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
12 |
11
|
crng2idl |
|- ( ZZring e. CRing -> ( LIdeal ` ZZring ) = ( 2Ideal ` ZZring ) ) |
13 |
10 12
|
ax-mp |
|- ( LIdeal ` ZZring ) = ( 2Ideal ` ZZring ) |
14 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
15 |
|
eceq2 |
|- ( .~ = ( ZZring ~QG ( S ` { N } ) ) -> [ x ] .~ = [ x ] ( ZZring ~QG ( S ` { N } ) ) ) |
16 |
2 15
|
ax-mp |
|- [ x ] .~ = [ x ] ( ZZring ~QG ( S ` { N } ) ) |
17 |
16
|
mpteq2i |
|- ( x e. ZZ |-> [ x ] .~ ) = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( S ` { N } ) ) ) |
18 |
9 13 14 17
|
qusrhm |
|- ( ( ZZring e. Ring /\ ( S ` { N } ) e. ( LIdeal ` ZZring ) ) -> ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) ) |
19 |
5 8 18
|
sylancr |
|- ( N e. NN0 -> ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) ) |
20 |
1 9
|
zncrng2 |
|- ( N e. ZZ -> ( ZZring /s .~ ) e. CRing ) |
21 |
|
crngring |
|- ( ( ZZring /s .~ ) e. CRing -> ( ZZring /s .~ ) e. Ring ) |
22 |
|
eqid |
|- ( ZRHom ` ( ZZring /s .~ ) ) = ( ZRHom ` ( ZZring /s .~ ) ) |
23 |
22
|
zrhrhmb |
|- ( ( ZZring /s .~ ) e. Ring -> ( ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) <-> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) ) |
24 |
6 20 21 23
|
4syl |
|- ( N e. NN0 -> ( ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) <-> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) ) |
25 |
19 24
|
mpbid |
|- ( N e. NN0 -> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) |
26 |
1 9 3
|
znzrh |
|- ( N e. NN0 -> ( ZRHom ` ( ZZring /s .~ ) ) = ( ZRHom ` Y ) ) |
27 |
25 26
|
eqtr2d |
|- ( N e. NN0 -> ( ZRHom ` Y ) = ( x e. ZZ |-> [ x ] .~ ) ) |
28 |
4 27
|
eqtrid |
|- ( N e. NN0 -> L = ( x e. ZZ |-> [ x ] .~ ) ) |