Step |
Hyp |
Ref |
Expression |
1 |
|
znzrhfo.y |
|- Y = ( Z/nZ ` N ) |
2 |
|
znzrhfo.b |
|- B = ( Base ` Y ) |
3 |
|
znzrhfo.2 |
|- L = ( ZRHom ` Y ) |
4 |
|
eqidd |
|- ( N e. NN0 -> ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
5 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
6 |
5
|
a1i |
|- ( N e. NN0 -> ZZ = ( Base ` ZZring ) ) |
7 |
|
eqid |
|- ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
8 |
|
ovexd |
|- ( N e. NN0 -> ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) e. _V ) |
9 |
|
zringring |
|- ZZring e. Ring |
10 |
9
|
a1i |
|- ( N e. NN0 -> ZZring e. Ring ) |
11 |
4 6 7 8 10
|
quslem |
|- ( N e. NN0 -> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
12 |
|
eqid |
|- ( RSpan ` ZZring ) = ( RSpan ` ZZring ) |
13 |
|
eqid |
|- ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) = ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) |
14 |
12 1 13
|
znbas |
|- ( N e. NN0 -> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( Base ` Y ) ) |
15 |
14 2
|
eqtr4di |
|- ( N e. NN0 -> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = B ) |
16 |
|
foeq3 |
|- ( ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = B -> ( ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) <-> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) ) |
17 |
15 16
|
syl |
|- ( N e. NN0 -> ( ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> ( ZZ /. ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) <-> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) ) |
18 |
11 17
|
mpbid |
|- ( N e. NN0 -> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) |
19 |
12 13 1 3
|
znzrh2 |
|- ( N e. NN0 -> L = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) |
20 |
|
foeq1 |
|- ( L = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) -> ( L : ZZ -onto-> B <-> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) ) |
21 |
19 20
|
syl |
|- ( N e. NN0 -> ( L : ZZ -onto-> B <-> ( x e. ZZ |-> [ x ] ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) : ZZ -onto-> B ) ) |
22 |
18 21
|
mpbird |
|- ( N e. NN0 -> L : ZZ -onto-> B ) |