Step |
Hyp |
Ref |
Expression |
1 |
|
znzrh2.s |
|- S = ( RSpan ` ZZring ) |
2 |
|
znzrh2.r |
|- .~ = ( ZZring ~QG ( S ` { N } ) ) |
3 |
|
znzrh2.y |
|- Y = ( Z/nZ ` N ) |
4 |
|
znzrh2.2 |
|- L = ( ZRHom ` Y ) |
5 |
1 2 3 4
|
znzrh2 |
|- ( N e. NN0 -> L = ( x e. ZZ |-> [ x ] .~ ) ) |
6 |
5
|
fveq1d |
|- ( N e. NN0 -> ( L ` A ) = ( ( x e. ZZ |-> [ x ] .~ ) ` A ) ) |
7 |
|
eceq1 |
|- ( x = A -> [ x ] .~ = [ A ] .~ ) |
8 |
|
eqid |
|- ( x e. ZZ |-> [ x ] .~ ) = ( x e. ZZ |-> [ x ] .~ ) |
9 |
2
|
ovexi |
|- .~ e. _V |
10 |
|
ecexg |
|- ( .~ e. _V -> [ A ] .~ e. _V ) |
11 |
9 10
|
ax-mp |
|- [ A ] .~ e. _V |
12 |
7 8 11
|
fvmpt |
|- ( A e. ZZ -> ( ( x e. ZZ |-> [ x ] .~ ) ` A ) = [ A ] .~ ) |
13 |
6 12
|
sylan9eq |
|- ( ( N e. NN0 /\ A e. ZZ ) -> ( L ` A ) = [ A ] .~ ) |