Step |
Hyp |
Ref |
Expression |
1 |
|
zorn2lem.3 |
|- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
2 |
|
zorn2lem.4 |
|- C = { z e. A | A. g e. ran f g R z } |
3 |
|
zorn2lem.5 |
|- D = { z e. A | A. g e. ( F " x ) g R z } |
4 |
1
|
tfr2 |
|- ( x e. On -> ( F ` x ) = ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ` ( F |` x ) ) ) |
5 |
4
|
adantr |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) = ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ` ( F |` x ) ) ) |
6 |
1
|
tfr1 |
|- F Fn On |
7 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
8 |
6 7
|
ax-mp |
|- Fun F |
9 |
|
vex |
|- x e. _V |
10 |
|
resfunexg |
|- ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) |
11 |
8 9 10
|
mp2an |
|- ( F |` x ) e. _V |
12 |
|
rneq |
|- ( f = ( F |` x ) -> ran f = ran ( F |` x ) ) |
13 |
|
df-ima |
|- ( F " x ) = ran ( F |` x ) |
14 |
12 13
|
eqtr4di |
|- ( f = ( F |` x ) -> ran f = ( F " x ) ) |
15 |
14
|
eleq2d |
|- ( f = ( F |` x ) -> ( g e. ran f <-> g e. ( F " x ) ) ) |
16 |
15
|
imbi1d |
|- ( f = ( F |` x ) -> ( ( g e. ran f -> g R z ) <-> ( g e. ( F " x ) -> g R z ) ) ) |
17 |
16
|
ralbidv2 |
|- ( f = ( F |` x ) -> ( A. g e. ran f g R z <-> A. g e. ( F " x ) g R z ) ) |
18 |
17
|
rabbidv |
|- ( f = ( F |` x ) -> { z e. A | A. g e. ran f g R z } = { z e. A | A. g e. ( F " x ) g R z } ) |
19 |
18 2 3
|
3eqtr4g |
|- ( f = ( F |` x ) -> C = D ) |
20 |
19
|
eleq2d |
|- ( f = ( F |` x ) -> ( u e. C <-> u e. D ) ) |
21 |
20
|
imbi1d |
|- ( f = ( F |` x ) -> ( ( u e. C -> -. u w v ) <-> ( u e. D -> -. u w v ) ) ) |
22 |
21
|
ralbidv2 |
|- ( f = ( F |` x ) -> ( A. u e. C -. u w v <-> A. u e. D -. u w v ) ) |
23 |
19 22
|
riotaeqbidv |
|- ( f = ( F |` x ) -> ( iota_ v e. C A. u e. C -. u w v ) = ( iota_ v e. D A. u e. D -. u w v ) ) |
24 |
|
eqid |
|- ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) = ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) |
25 |
|
riotaex |
|- ( iota_ v e. D A. u e. D -. u w v ) e. _V |
26 |
23 24 25
|
fvmpt |
|- ( ( F |` x ) e. _V -> ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ` ( F |` x ) ) = ( iota_ v e. D A. u e. D -. u w v ) ) |
27 |
11 26
|
ax-mp |
|- ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ` ( F |` x ) ) = ( iota_ v e. D A. u e. D -. u w v ) |
28 |
5 27
|
eqtrdi |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) = ( iota_ v e. D A. u e. D -. u w v ) ) |
29 |
|
simprl |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> w We A ) |
30 |
|
weso |
|- ( w We A -> w Or A ) |
31 |
30
|
ad2antrl |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> w Or A ) |
32 |
|
vex |
|- w e. _V |
33 |
|
soex |
|- ( ( w Or A /\ w e. _V ) -> A e. _V ) |
34 |
31 32 33
|
sylancl |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> A e. _V ) |
35 |
3 34
|
rabexd |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> D e. _V ) |
36 |
3
|
ssrab3 |
|- D C_ A |
37 |
36
|
a1i |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> D C_ A ) |
38 |
|
simprr |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> D =/= (/) ) |
39 |
|
wereu |
|- ( ( w We A /\ ( D e. _V /\ D C_ A /\ D =/= (/) ) ) -> E! v e. D A. u e. D -. u w v ) |
40 |
29 35 37 38 39
|
syl13anc |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> E! v e. D A. u e. D -. u w v ) |
41 |
|
riotacl |
|- ( E! v e. D A. u e. D -. u w v -> ( iota_ v e. D A. u e. D -. u w v ) e. D ) |
42 |
40 41
|
syl |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( iota_ v e. D A. u e. D -. u w v ) e. D ) |
43 |
28 42
|
eqeltrd |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) |