| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 |  |-  F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) | 
						
							| 2 |  | zorn2lem.4 |  |-  C = { z e. A | A. g e. ran f g R z } | 
						
							| 3 |  | zorn2lem.5 |  |-  D = { z e. A | A. g e. ( F " x ) g R z } | 
						
							| 4 | 1 2 3 | zorn2lem1 |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) | 
						
							| 5 |  | breq2 |  |-  ( z = ( F ` x ) -> ( g R z <-> g R ( F ` x ) ) ) | 
						
							| 6 | 5 | ralbidv |  |-  ( z = ( F ` x ) -> ( A. g e. ( F " x ) g R z <-> A. g e. ( F " x ) g R ( F ` x ) ) ) | 
						
							| 7 | 6 3 | elrab2 |  |-  ( ( F ` x ) e. D <-> ( ( F ` x ) e. A /\ A. g e. ( F " x ) g R ( F ` x ) ) ) | 
						
							| 8 | 7 | simprbi |  |-  ( ( F ` x ) e. D -> A. g e. ( F " x ) g R ( F ` x ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> A. g e. ( F " x ) g R ( F ` x ) ) | 
						
							| 10 | 1 | tfr1 |  |-  F Fn On | 
						
							| 11 |  | onss |  |-  ( x e. On -> x C_ On ) | 
						
							| 12 |  | fnfvima |  |-  ( ( F Fn On /\ x C_ On /\ y e. x ) -> ( F ` y ) e. ( F " x ) ) | 
						
							| 13 | 12 | 3expia |  |-  ( ( F Fn On /\ x C_ On ) -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) | 
						
							| 14 | 10 11 13 | sylancr |  |-  ( x e. On -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( y e. x -> ( F ` y ) e. ( F " x ) ) ) | 
						
							| 16 |  | breq1 |  |-  ( g = ( F ` y ) -> ( g R ( F ` x ) <-> ( F ` y ) R ( F ` x ) ) ) | 
						
							| 17 | 16 | rspccv |  |-  ( A. g e. ( F " x ) g R ( F ` x ) -> ( ( F ` y ) e. ( F " x ) -> ( F ` y ) R ( F ` x ) ) ) | 
						
							| 18 | 9 15 17 | sylsyld |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( y e. x -> ( F ` y ) R ( F ` x ) ) ) |