| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 |  |-  F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) | 
						
							| 2 |  | zorn2lem.4 |  |-  C = { z e. A | A. g e. ran f g R z } | 
						
							| 3 |  | zorn2lem.5 |  |-  D = { z e. A | A. g e. ( F " x ) g R z } | 
						
							| 4 | 1 2 3 | zorn2lem2 |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( y e. x -> ( F ` y ) R ( F ` x ) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( y e. x -> ( F ` y ) R ( F ` x ) ) ) | 
						
							| 6 | 3 | ssrab3 |  |-  D C_ A | 
						
							| 7 | 1 2 3 | zorn2lem1 |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) | 
						
							| 8 | 6 7 | sselid |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. A ) | 
						
							| 9 |  | breq1 |  |-  ( ( F ` x ) = ( F ` y ) -> ( ( F ` x ) R ( F ` x ) <-> ( F ` y ) R ( F ` x ) ) ) | 
						
							| 10 | 9 | biimprcd |  |-  ( ( F ` y ) R ( F ` x ) -> ( ( F ` x ) = ( F ` y ) -> ( F ` x ) R ( F ` x ) ) ) | 
						
							| 11 |  | poirr |  |-  ( ( R Po A /\ ( F ` x ) e. A ) -> -. ( F ` x ) R ( F ` x ) ) | 
						
							| 12 | 10 11 | nsyli |  |-  ( ( F ` y ) R ( F ` x ) -> ( ( R Po A /\ ( F ` x ) e. A ) -> -. ( F ` x ) = ( F ` y ) ) ) | 
						
							| 13 | 12 | com12 |  |-  ( ( R Po A /\ ( F ` x ) e. A ) -> ( ( F ` y ) R ( F ` x ) -> -. ( F ` x ) = ( F ` y ) ) ) | 
						
							| 14 | 8 13 | sylan2 |  |-  ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( ( F ` y ) R ( F ` x ) -> -. ( F ` x ) = ( F ` y ) ) ) | 
						
							| 15 | 5 14 | syld |  |-  ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) |