| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 |  |-  F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) | 
						
							| 2 |  | zorn2lem.4 |  |-  C = { z e. A | A. g e. ran f g R z } | 
						
							| 3 |  | zorn2lem.5 |  |-  D = { z e. A | A. g e. ( F " x ) g R z } | 
						
							| 4 |  | pm3.24 |  |-  -. ( ran F e. _V /\ -. ran F e. _V ) | 
						
							| 5 |  | df-ne |  |-  ( D =/= (/) <-> -. D = (/) ) | 
						
							| 6 | 5 | ralbii |  |-  ( A. x e. On D =/= (/) <-> A. x e. On -. D = (/) ) | 
						
							| 7 |  | df-ral |  |-  ( A. x e. On D =/= (/) <-> A. x ( x e. On -> D =/= (/) ) ) | 
						
							| 8 |  | ralnex |  |-  ( A. x e. On -. D = (/) <-> -. E. x e. On D = (/) ) | 
						
							| 9 | 6 7 8 | 3bitr3i |  |-  ( A. x ( x e. On -> D =/= (/) ) <-> -. E. x e. On D = (/) ) | 
						
							| 10 |  | weso |  |-  ( w We A -> w Or A ) | 
						
							| 11 | 10 | adantr |  |-  ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> w Or A ) | 
						
							| 12 |  | vex |  |-  w e. _V | 
						
							| 13 |  | soex |  |-  ( ( w Or A /\ w e. _V ) -> A e. _V ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> A e. _V ) | 
						
							| 15 | 1 | tfr1 |  |-  F Fn On | 
						
							| 16 |  | fvelrnb |  |-  ( F Fn On -> ( y e. ran F <-> E. x e. On ( F ` x ) = y ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( y e. ran F <-> E. x e. On ( F ` x ) = y ) | 
						
							| 18 |  | nfv |  |-  F/ x w We A | 
						
							| 19 |  | nfa1 |  |-  F/ x A. x ( x e. On -> D =/= (/) ) | 
						
							| 20 | 18 19 | nfan |  |-  F/ x ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) | 
						
							| 21 |  | nfv |  |-  F/ x y e. A | 
						
							| 22 | 3 | ssrab3 |  |-  D C_ A | 
						
							| 23 | 1 2 3 | zorn2lem1 |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) | 
						
							| 24 | 22 23 | sselid |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. A ) | 
						
							| 25 |  | eleq1 |  |-  ( ( F ` x ) = y -> ( ( F ` x ) e. A <-> y e. A ) ) | 
						
							| 26 | 24 25 | syl5ibcom |  |-  ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( ( F ` x ) = y -> y e. A ) ) | 
						
							| 27 | 26 | exp32 |  |-  ( x e. On -> ( w We A -> ( D =/= (/) -> ( ( F ` x ) = y -> y e. A ) ) ) ) | 
						
							| 28 | 27 | com12 |  |-  ( w We A -> ( x e. On -> ( D =/= (/) -> ( ( F ` x ) = y -> y e. A ) ) ) ) | 
						
							| 29 | 28 | a2d |  |-  ( w We A -> ( ( x e. On -> D =/= (/) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) ) | 
						
							| 30 | 29 | spsd |  |-  ( w We A -> ( A. x ( x e. On -> D =/= (/) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) ) | 
						
							| 31 | 30 | imp |  |-  ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) | 
						
							| 32 | 20 21 31 | rexlimd |  |-  ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( E. x e. On ( F ` x ) = y -> y e. A ) ) | 
						
							| 33 | 17 32 | biimtrid |  |-  ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( y e. ran F -> y e. A ) ) | 
						
							| 34 | 33 | ssrdv |  |-  ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ran F C_ A ) | 
						
							| 35 | 14 34 | ssexd |  |-  ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ran F e. _V ) | 
						
							| 36 | 35 | ex |  |-  ( w We A -> ( A. x ( x e. On -> D =/= (/) ) -> ran F e. _V ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> ran F e. _V ) ) | 
						
							| 38 | 1 2 3 | zorn2lem3 |  |-  ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) | 
						
							| 39 | 38 | exp45 |  |-  ( R Po A -> ( x e. On -> ( w We A -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) ) | 
						
							| 40 | 39 | com23 |  |-  ( R Po A -> ( w We A -> ( x e. On -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( R Po A /\ w We A ) -> ( x e. On -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) | 
						
							| 42 | 41 | a2d |  |-  ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> ( x e. On -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) | 
						
							| 43 | 42 | imp4a |  |-  ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) | 
						
							| 44 | 43 | alrimdv |  |-  ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) | 
						
							| 45 | 44 | alimdv |  |-  ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> A. x A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) | 
						
							| 46 |  | r2al |  |-  ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) <-> A. x A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) | 
						
							| 47 | 45 46 | imbitrrdi |  |-  ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) ) | 
						
							| 48 |  | ssid |  |-  On C_ On | 
						
							| 49 | 15 | tz7.48lem |  |-  ( ( On C_ On /\ A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) -> Fun `' ( F |` On ) ) | 
						
							| 50 | 48 49 | mpan |  |-  ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) -> Fun `' ( F |` On ) ) | 
						
							| 51 |  | fnrel |  |-  ( F Fn On -> Rel F ) | 
						
							| 52 | 15 51 | ax-mp |  |-  Rel F | 
						
							| 53 | 15 | fndmi |  |-  dom F = On | 
						
							| 54 | 53 | eqimssi |  |-  dom F C_ On | 
						
							| 55 |  | relssres |  |-  ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F ) | 
						
							| 56 | 52 54 55 | mp2an |  |-  ( F |` On ) = F | 
						
							| 57 | 56 | cnveqi |  |-  `' ( F |` On ) = `' F | 
						
							| 58 | 57 | funeqi |  |-  ( Fun `' ( F |` On ) <-> Fun `' F ) | 
						
							| 59 | 50 58 | sylib |  |-  ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) -> Fun `' F ) | 
						
							| 60 | 47 59 | syl6 |  |-  ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> Fun `' F ) ) | 
						
							| 61 |  | onprc |  |-  -. On e. _V | 
						
							| 62 |  | funrnex |  |-  ( dom `' F e. _V -> ( Fun `' F -> ran `' F e. _V ) ) | 
						
							| 63 | 62 | com12 |  |-  ( Fun `' F -> ( dom `' F e. _V -> ran `' F e. _V ) ) | 
						
							| 64 |  | df-rn |  |-  ran F = dom `' F | 
						
							| 65 | 64 | eleq1i |  |-  ( ran F e. _V <-> dom `' F e. _V ) | 
						
							| 66 |  | dfdm4 |  |-  dom F = ran `' F | 
						
							| 67 | 53 66 | eqtr3i |  |-  On = ran `' F | 
						
							| 68 | 67 | eleq1i |  |-  ( On e. _V <-> ran `' F e. _V ) | 
						
							| 69 | 63 65 68 | 3imtr4g |  |-  ( Fun `' F -> ( ran F e. _V -> On e. _V ) ) | 
						
							| 70 | 61 69 | mtoi |  |-  ( Fun `' F -> -. ran F e. _V ) | 
						
							| 71 | 60 70 | syl6 |  |-  ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> -. ran F e. _V ) ) | 
						
							| 72 | 37 71 | jcad |  |-  ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> ( ran F e. _V /\ -. ran F e. _V ) ) ) | 
						
							| 73 | 9 72 | biimtrrid |  |-  ( ( R Po A /\ w We A ) -> ( -. E. x e. On D = (/) -> ( ran F e. _V /\ -. ran F e. _V ) ) ) | 
						
							| 74 | 4 73 | mt3i |  |-  ( ( R Po A /\ w We A ) -> E. x e. On D = (/) ) |