Step |
Hyp |
Ref |
Expression |
1 |
|
zorn2lem.3 |
|- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
2 |
|
zorn2lem.4 |
|- C = { z e. A | A. g e. ran f g R z } |
3 |
|
zorn2lem.5 |
|- D = { z e. A | A. g e. ( F " x ) g R z } |
4 |
|
zorn2lem.7 |
|- H = { z e. A | A. g e. ( F " y ) g R z } |
5 |
1
|
tfr1 |
|- F Fn On |
6 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
7 |
5 6
|
ax-mp |
|- Fun F |
8 |
|
fvelima |
|- ( ( Fun F /\ s e. ( F " x ) ) -> E. y e. x ( F ` y ) = s ) |
9 |
7 8
|
mpan |
|- ( s e. ( F " x ) -> E. y e. x ( F ` y ) = s ) |
10 |
|
nfv |
|- F/ y ( w We A /\ x e. On ) |
11 |
|
nfra1 |
|- F/ y A. y e. x H =/= (/) |
12 |
10 11
|
nfan |
|- F/ y ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) |
13 |
|
nfv |
|- F/ y s e. A |
14 |
|
df-ral |
|- ( A. y e. x H =/= (/) <-> A. y ( y e. x -> H =/= (/) ) ) |
15 |
|
onelon |
|- ( ( x e. On /\ y e. x ) -> y e. On ) |
16 |
4
|
ssrab3 |
|- H C_ A |
17 |
1 2 4
|
zorn2lem1 |
|- ( ( y e. On /\ ( w We A /\ H =/= (/) ) ) -> ( F ` y ) e. H ) |
18 |
16 17
|
sselid |
|- ( ( y e. On /\ ( w We A /\ H =/= (/) ) ) -> ( F ` y ) e. A ) |
19 |
|
eleq1 |
|- ( ( F ` y ) = s -> ( ( F ` y ) e. A <-> s e. A ) ) |
20 |
18 19
|
syl5ib |
|- ( ( F ` y ) = s -> ( ( y e. On /\ ( w We A /\ H =/= (/) ) ) -> s e. A ) ) |
21 |
15 20
|
sylani |
|- ( ( F ` y ) = s -> ( ( ( x e. On /\ y e. x ) /\ ( w We A /\ H =/= (/) ) ) -> s e. A ) ) |
22 |
21
|
com12 |
|- ( ( ( x e. On /\ y e. x ) /\ ( w We A /\ H =/= (/) ) ) -> ( ( F ` y ) = s -> s e. A ) ) |
23 |
22
|
exp43 |
|- ( x e. On -> ( y e. x -> ( w We A -> ( H =/= (/) -> ( ( F ` y ) = s -> s e. A ) ) ) ) ) |
24 |
23
|
com3r |
|- ( w We A -> ( x e. On -> ( y e. x -> ( H =/= (/) -> ( ( F ` y ) = s -> s e. A ) ) ) ) ) |
25 |
24
|
imp |
|- ( ( w We A /\ x e. On ) -> ( y e. x -> ( H =/= (/) -> ( ( F ` y ) = s -> s e. A ) ) ) ) |
26 |
25
|
a2d |
|- ( ( w We A /\ x e. On ) -> ( ( y e. x -> H =/= (/) ) -> ( y e. x -> ( ( F ` y ) = s -> s e. A ) ) ) ) |
27 |
26
|
spsd |
|- ( ( w We A /\ x e. On ) -> ( A. y ( y e. x -> H =/= (/) ) -> ( y e. x -> ( ( F ` y ) = s -> s e. A ) ) ) ) |
28 |
14 27
|
syl5bi |
|- ( ( w We A /\ x e. On ) -> ( A. y e. x H =/= (/) -> ( y e. x -> ( ( F ` y ) = s -> s e. A ) ) ) ) |
29 |
28
|
imp |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( y e. x -> ( ( F ` y ) = s -> s e. A ) ) ) |
30 |
12 13 29
|
rexlimd |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( E. y e. x ( F ` y ) = s -> s e. A ) ) |
31 |
9 30
|
syl5 |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( s e. ( F " x ) -> s e. A ) ) |
32 |
31
|
ssrdv |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( F " x ) C_ A ) |