Step |
Hyp |
Ref |
Expression |
1 |
|
zorn2lem.3 |
|- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
2 |
|
zorn2lem.4 |
|- C = { z e. A | A. g e. ran f g R z } |
3 |
|
zorn2lem.5 |
|- D = { z e. A | A. g e. ( F " x ) g R z } |
4 |
|
zorn2lem.7 |
|- H = { z e. A | A. g e. ( F " y ) g R z } |
5 |
|
poss |
|- ( ( F " x ) C_ A -> ( R Po A -> R Po ( F " x ) ) ) |
6 |
1 2 3 4
|
zorn2lem5 |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( F " x ) C_ A ) |
7 |
5 6
|
syl11 |
|- ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> R Po ( F " x ) ) ) |
8 |
1
|
tfr1 |
|- F Fn On |
9 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
10 |
|
fvelima |
|- ( ( Fun F /\ s e. ( F " x ) ) -> E. b e. x ( F ` b ) = s ) |
11 |
|
df-rex |
|- ( E. b e. x ( F ` b ) = s <-> E. b ( b e. x /\ ( F ` b ) = s ) ) |
12 |
10 11
|
sylib |
|- ( ( Fun F /\ s e. ( F " x ) ) -> E. b ( b e. x /\ ( F ` b ) = s ) ) |
13 |
12
|
ex |
|- ( Fun F -> ( s e. ( F " x ) -> E. b ( b e. x /\ ( F ` b ) = s ) ) ) |
14 |
|
fvelima |
|- ( ( Fun F /\ r e. ( F " x ) ) -> E. a e. x ( F ` a ) = r ) |
15 |
|
df-rex |
|- ( E. a e. x ( F ` a ) = r <-> E. a ( a e. x /\ ( F ` a ) = r ) ) |
16 |
14 15
|
sylib |
|- ( ( Fun F /\ r e. ( F " x ) ) -> E. a ( a e. x /\ ( F ` a ) = r ) ) |
17 |
16
|
ex |
|- ( Fun F -> ( r e. ( F " x ) -> E. a ( a e. x /\ ( F ` a ) = r ) ) ) |
18 |
13 17
|
anim12d |
|- ( Fun F -> ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) ) |
19 |
8 9 18
|
mp2b |
|- ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) |
20 |
|
an4 |
|- ( ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) ) |
21 |
20
|
2exbii |
|- ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> E. b E. a ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) ) |
22 |
|
exdistrv |
|- ( E. b E. a ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) <-> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) |
23 |
21 22
|
bitri |
|- ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) |
24 |
19 23
|
sylibr |
|- ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) ) |
25 |
4
|
neeq1i |
|- ( H =/= (/) <-> { z e. A | A. g e. ( F " y ) g R z } =/= (/) ) |
26 |
25
|
ralbii |
|- ( A. y e. x H =/= (/) <-> A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) ) |
27 |
|
imaeq2 |
|- ( y = b -> ( F " y ) = ( F " b ) ) |
28 |
27
|
raleqdv |
|- ( y = b -> ( A. g e. ( F " y ) g R z <-> A. g e. ( F " b ) g R z ) ) |
29 |
28
|
rabbidv |
|- ( y = b -> { z e. A | A. g e. ( F " y ) g R z } = { z e. A | A. g e. ( F " b ) g R z } ) |
30 |
29
|
neeq1d |
|- ( y = b -> ( { z e. A | A. g e. ( F " y ) g R z } =/= (/) <-> { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) |
31 |
30
|
rspccv |
|- ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( b e. x -> { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) |
32 |
|
imaeq2 |
|- ( y = a -> ( F " y ) = ( F " a ) ) |
33 |
32
|
raleqdv |
|- ( y = a -> ( A. g e. ( F " y ) g R z <-> A. g e. ( F " a ) g R z ) ) |
34 |
33
|
rabbidv |
|- ( y = a -> { z e. A | A. g e. ( F " y ) g R z } = { z e. A | A. g e. ( F " a ) g R z } ) |
35 |
34
|
neeq1d |
|- ( y = a -> ( { z e. A | A. g e. ( F " y ) g R z } =/= (/) <-> { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) |
36 |
35
|
rspccv |
|- ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( a e. x -> { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) |
37 |
31 36
|
anim12d |
|- ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) |
38 |
26 37
|
sylbi |
|- ( A. y e. x H =/= (/) -> ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) |
39 |
|
onelon |
|- ( ( x e. On /\ b e. x ) -> b e. On ) |
40 |
|
onelon |
|- ( ( x e. On /\ a e. x ) -> a e. On ) |
41 |
39 40
|
anim12dan |
|- ( ( x e. On /\ ( b e. x /\ a e. x ) ) -> ( b e. On /\ a e. On ) ) |
42 |
41
|
ex |
|- ( x e. On -> ( ( b e. x /\ a e. x ) -> ( b e. On /\ a e. On ) ) ) |
43 |
|
eloni |
|- ( b e. On -> Ord b ) |
44 |
|
eloni |
|- ( a e. On -> Ord a ) |
45 |
|
ordtri3or |
|- ( ( Ord b /\ Ord a ) -> ( b e. a \/ b = a \/ a e. b ) ) |
46 |
43 44 45
|
syl2an |
|- ( ( b e. On /\ a e. On ) -> ( b e. a \/ b = a \/ a e. b ) ) |
47 |
|
eqid |
|- { z e. A | A. g e. ( F " a ) g R z } = { z e. A | A. g e. ( F " a ) g R z } |
48 |
1 2 47
|
zorn2lem2 |
|- ( ( a e. On /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( F ` b ) R ( F ` a ) ) ) |
49 |
48
|
adantll |
|- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( F ` b ) R ( F ` a ) ) ) |
50 |
|
breq12 |
|- ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` b ) R ( F ` a ) <-> s R r ) ) |
51 |
50
|
biimpcd |
|- ( ( F ` b ) R ( F ` a ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> s R r ) ) |
52 |
49 51
|
syl6 |
|- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> s R r ) ) ) |
53 |
52
|
com23 |
|- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b e. a -> s R r ) ) ) |
54 |
53
|
adantrrl |
|- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b e. a -> s R r ) ) ) |
55 |
54
|
imp |
|- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( b e. a -> s R r ) ) |
56 |
|
fveq2 |
|- ( b = a -> ( F ` b ) = ( F ` a ) ) |
57 |
|
eqeq12 |
|- ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` b ) = ( F ` a ) <-> s = r ) ) |
58 |
56 57
|
syl5ib |
|- ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b = a -> s = r ) ) |
59 |
58
|
adantl |
|- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( b = a -> s = r ) ) |
60 |
|
eqid |
|- { z e. A | A. g e. ( F " b ) g R z } = { z e. A | A. g e. ( F " b ) g R z } |
61 |
1 2 60
|
zorn2lem2 |
|- ( ( b e. On /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( F ` a ) R ( F ` b ) ) ) |
62 |
61
|
adantlr |
|- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( F ` a ) R ( F ` b ) ) ) |
63 |
|
breq12 |
|- ( ( ( F ` a ) = r /\ ( F ` b ) = s ) -> ( ( F ` a ) R ( F ` b ) <-> r R s ) ) |
64 |
63
|
ancoms |
|- ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` a ) R ( F ` b ) <-> r R s ) ) |
65 |
64
|
biimpcd |
|- ( ( F ` a ) R ( F ` b ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> r R s ) ) |
66 |
62 65
|
syl6 |
|- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> r R s ) ) ) |
67 |
66
|
com23 |
|- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( a e. b -> r R s ) ) ) |
68 |
67
|
adantrrr |
|- ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( a e. b -> r R s ) ) ) |
69 |
68
|
imp |
|- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( a e. b -> r R s ) ) |
70 |
55 59 69
|
3orim123d |
|- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( ( b e. a \/ b = a \/ a e. b ) -> ( s R r \/ s = r \/ r R s ) ) ) |
71 |
46 70
|
syl5 |
|- ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( ( b e. On /\ a e. On ) -> ( s R r \/ s = r \/ r R s ) ) ) |
72 |
71
|
exp31 |
|- ( ( b e. On /\ a e. On ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( b e. On /\ a e. On ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
73 |
72
|
com4r |
|- ( ( b e. On /\ a e. On ) -> ( ( b e. On /\ a e. On ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
74 |
42 42 73
|
syl6c |
|- ( x e. On -> ( ( b e. x /\ a e. x ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
75 |
74
|
exp4a |
|- ( x e. On -> ( ( b e. x /\ a e. x ) -> ( w We A -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) ) |
76 |
75
|
com3r |
|- ( w We A -> ( x e. On -> ( ( b e. x /\ a e. x ) -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) ) |
77 |
76
|
imp |
|- ( ( w We A /\ x e. On ) -> ( ( b e. x /\ a e. x ) -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
78 |
77
|
a2d |
|- ( ( w We A /\ x e. On ) -> ( ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( b e. x /\ a e. x ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
79 |
38 78
|
syl5 |
|- ( ( w We A /\ x e. On ) -> ( A. y e. x H =/= (/) -> ( ( b e. x /\ a e. x ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) |
80 |
79
|
imp4b |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( s R r \/ s = r \/ r R s ) ) ) |
81 |
80
|
exlimdvv |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( s R r \/ s = r \/ r R s ) ) ) |
82 |
24 81
|
syl5 |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( s R r \/ s = r \/ r R s ) ) ) |
83 |
82
|
ralrimivv |
|- ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) |
84 |
7 83
|
jca2 |
|- ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( R Po ( F " x ) /\ A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) ) ) |
85 |
|
df-so |
|- ( R Or ( F " x ) <-> ( R Po ( F " x ) /\ A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) ) |
86 |
84 85
|
syl6ibr |
|- ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> R Or ( F " x ) ) ) |