| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 |  |-  F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) | 
						
							| 2 |  | zorn2lem.4 |  |-  C = { z e. A | A. g e. ran f g R z } | 
						
							| 3 |  | zorn2lem.5 |  |-  D = { z e. A | A. g e. ( F " x ) g R z } | 
						
							| 4 |  | zorn2lem.7 |  |-  H = { z e. A | A. g e. ( F " y ) g R z } | 
						
							| 5 |  | poss |  |-  ( ( F " x ) C_ A -> ( R Po A -> R Po ( F " x ) ) ) | 
						
							| 6 | 1 2 3 4 | zorn2lem5 |  |-  ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( F " x ) C_ A ) | 
						
							| 7 | 5 6 | syl11 |  |-  ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> R Po ( F " x ) ) ) | 
						
							| 8 | 1 | tfr1 |  |-  F Fn On | 
						
							| 9 |  | fnfun |  |-  ( F Fn On -> Fun F ) | 
						
							| 10 |  | fvelima |  |-  ( ( Fun F /\ s e. ( F " x ) ) -> E. b e. x ( F ` b ) = s ) | 
						
							| 11 |  | df-rex |  |-  ( E. b e. x ( F ` b ) = s <-> E. b ( b e. x /\ ( F ` b ) = s ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ( Fun F /\ s e. ( F " x ) ) -> E. b ( b e. x /\ ( F ` b ) = s ) ) | 
						
							| 13 | 12 | ex |  |-  ( Fun F -> ( s e. ( F " x ) -> E. b ( b e. x /\ ( F ` b ) = s ) ) ) | 
						
							| 14 |  | fvelima |  |-  ( ( Fun F /\ r e. ( F " x ) ) -> E. a e. x ( F ` a ) = r ) | 
						
							| 15 |  | df-rex |  |-  ( E. a e. x ( F ` a ) = r <-> E. a ( a e. x /\ ( F ` a ) = r ) ) | 
						
							| 16 | 14 15 | sylib |  |-  ( ( Fun F /\ r e. ( F " x ) ) -> E. a ( a e. x /\ ( F ` a ) = r ) ) | 
						
							| 17 | 16 | ex |  |-  ( Fun F -> ( r e. ( F " x ) -> E. a ( a e. x /\ ( F ` a ) = r ) ) ) | 
						
							| 18 | 13 17 | anim12d |  |-  ( Fun F -> ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) ) | 
						
							| 19 | 8 9 18 | mp2b |  |-  ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) | 
						
							| 20 |  | an4 |  |-  ( ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) ) | 
						
							| 21 | 20 | 2exbii |  |-  ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> E. b E. a ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) ) | 
						
							| 22 |  | exdistrv |  |-  ( E. b E. a ( ( b e. x /\ ( F ` b ) = s ) /\ ( a e. x /\ ( F ` a ) = r ) ) <-> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) | 
						
							| 23 | 21 22 | bitri |  |-  ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) <-> ( E. b ( b e. x /\ ( F ` b ) = s ) /\ E. a ( a e. x /\ ( F ` a ) = r ) ) ) | 
						
							| 24 | 19 23 | sylibr |  |-  ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) ) | 
						
							| 25 | 4 | neeq1i |  |-  ( H =/= (/) <-> { z e. A | A. g e. ( F " y ) g R z } =/= (/) ) | 
						
							| 26 | 25 | ralbii |  |-  ( A. y e. x H =/= (/) <-> A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) ) | 
						
							| 27 |  | imaeq2 |  |-  ( y = b -> ( F " y ) = ( F " b ) ) | 
						
							| 28 | 27 | raleqdv |  |-  ( y = b -> ( A. g e. ( F " y ) g R z <-> A. g e. ( F " b ) g R z ) ) | 
						
							| 29 | 28 | rabbidv |  |-  ( y = b -> { z e. A | A. g e. ( F " y ) g R z } = { z e. A | A. g e. ( F " b ) g R z } ) | 
						
							| 30 | 29 | neeq1d |  |-  ( y = b -> ( { z e. A | A. g e. ( F " y ) g R z } =/= (/) <-> { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) | 
						
							| 31 | 30 | rspccv |  |-  ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( b e. x -> { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) | 
						
							| 32 |  | imaeq2 |  |-  ( y = a -> ( F " y ) = ( F " a ) ) | 
						
							| 33 | 32 | raleqdv |  |-  ( y = a -> ( A. g e. ( F " y ) g R z <-> A. g e. ( F " a ) g R z ) ) | 
						
							| 34 | 33 | rabbidv |  |-  ( y = a -> { z e. A | A. g e. ( F " y ) g R z } = { z e. A | A. g e. ( F " a ) g R z } ) | 
						
							| 35 | 34 | neeq1d |  |-  ( y = a -> ( { z e. A | A. g e. ( F " y ) g R z } =/= (/) <-> { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) | 
						
							| 36 | 35 | rspccv |  |-  ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( a e. x -> { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) | 
						
							| 37 | 31 36 | anim12d |  |-  ( A. y e. x { z e. A | A. g e. ( F " y ) g R z } =/= (/) -> ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) | 
						
							| 38 | 26 37 | sylbi |  |-  ( A. y e. x H =/= (/) -> ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) | 
						
							| 39 |  | onelon |  |-  ( ( x e. On /\ b e. x ) -> b e. On ) | 
						
							| 40 |  | onelon |  |-  ( ( x e. On /\ a e. x ) -> a e. On ) | 
						
							| 41 | 39 40 | anim12dan |  |-  ( ( x e. On /\ ( b e. x /\ a e. x ) ) -> ( b e. On /\ a e. On ) ) | 
						
							| 42 | 41 | ex |  |-  ( x e. On -> ( ( b e. x /\ a e. x ) -> ( b e. On /\ a e. On ) ) ) | 
						
							| 43 |  | eloni |  |-  ( b e. On -> Ord b ) | 
						
							| 44 |  | eloni |  |-  ( a e. On -> Ord a ) | 
						
							| 45 |  | ordtri3or |  |-  ( ( Ord b /\ Ord a ) -> ( b e. a \/ b = a \/ a e. b ) ) | 
						
							| 46 | 43 44 45 | syl2an |  |-  ( ( b e. On /\ a e. On ) -> ( b e. a \/ b = a \/ a e. b ) ) | 
						
							| 47 |  | eqid |  |-  { z e. A | A. g e. ( F " a ) g R z } = { z e. A | A. g e. ( F " a ) g R z } | 
						
							| 48 | 1 2 47 | zorn2lem2 |  |-  ( ( a e. On /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( F ` b ) R ( F ` a ) ) ) | 
						
							| 49 | 48 | adantll |  |-  ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( F ` b ) R ( F ` a ) ) ) | 
						
							| 50 |  | breq12 |  |-  ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` b ) R ( F ` a ) <-> s R r ) ) | 
						
							| 51 | 50 | biimpcd |  |-  ( ( F ` b ) R ( F ` a ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> s R r ) ) | 
						
							| 52 | 49 51 | syl6 |  |-  ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( b e. a -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> s R r ) ) ) | 
						
							| 53 | 52 | com23 |  |-  ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b e. a -> s R r ) ) ) | 
						
							| 54 | 53 | adantrrl |  |-  ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b e. a -> s R r ) ) ) | 
						
							| 55 | 54 | imp |  |-  ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( b e. a -> s R r ) ) | 
						
							| 56 |  | fveq2 |  |-  ( b = a -> ( F ` b ) = ( F ` a ) ) | 
						
							| 57 |  | eqeq12 |  |-  ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` b ) = ( F ` a ) <-> s = r ) ) | 
						
							| 58 | 56 57 | imbitrid |  |-  ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( b = a -> s = r ) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( b = a -> s = r ) ) | 
						
							| 60 |  | eqid |  |-  { z e. A | A. g e. ( F " b ) g R z } = { z e. A | A. g e. ( F " b ) g R z } | 
						
							| 61 | 1 2 60 | zorn2lem2 |  |-  ( ( b e. On /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( F ` a ) R ( F ` b ) ) ) | 
						
							| 62 | 61 | adantlr |  |-  ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( F ` a ) R ( F ` b ) ) ) | 
						
							| 63 |  | breq12 |  |-  ( ( ( F ` a ) = r /\ ( F ` b ) = s ) -> ( ( F ` a ) R ( F ` b ) <-> r R s ) ) | 
						
							| 64 | 63 | ancoms |  |-  ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( F ` a ) R ( F ` b ) <-> r R s ) ) | 
						
							| 65 | 64 | biimpcd |  |-  ( ( F ` a ) R ( F ` b ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> r R s ) ) | 
						
							| 66 | 62 65 | syl6 |  |-  ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( a e. b -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> r R s ) ) ) | 
						
							| 67 | 66 | com23 |  |-  ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ { z e. A | A. g e. ( F " b ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( a e. b -> r R s ) ) ) | 
						
							| 68 | 67 | adantrrr |  |-  ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( a e. b -> r R s ) ) ) | 
						
							| 69 | 68 | imp |  |-  ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( a e. b -> r R s ) ) | 
						
							| 70 | 55 59 69 | 3orim123d |  |-  ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( ( b e. a \/ b = a \/ a e. b ) -> ( s R r \/ s = r \/ r R s ) ) ) | 
						
							| 71 | 46 70 | syl5 |  |-  ( ( ( ( b e. On /\ a e. On ) /\ ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( ( b e. On /\ a e. On ) -> ( s R r \/ s = r \/ r R s ) ) ) | 
						
							| 72 | 71 | exp31 |  |-  ( ( b e. On /\ a e. On ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( ( b e. On /\ a e. On ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) | 
						
							| 73 | 72 | com4r |  |-  ( ( b e. On /\ a e. On ) -> ( ( b e. On /\ a e. On ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) | 
						
							| 74 | 42 42 73 | syl6c |  |-  ( x e. On -> ( ( b e. x /\ a e. x ) -> ( ( w We A /\ ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) | 
						
							| 75 | 74 | exp4a |  |-  ( x e. On -> ( ( b e. x /\ a e. x ) -> ( w We A -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) ) | 
						
							| 76 | 75 | com3r |  |-  ( w We A -> ( x e. On -> ( ( b e. x /\ a e. x ) -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) ) | 
						
							| 77 | 76 | imp |  |-  ( ( w We A /\ x e. On ) -> ( ( b e. x /\ a e. x ) -> ( ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) | 
						
							| 78 | 77 | a2d |  |-  ( ( w We A /\ x e. On ) -> ( ( ( b e. x /\ a e. x ) -> ( { z e. A | A. g e. ( F " b ) g R z } =/= (/) /\ { z e. A | A. g e. ( F " a ) g R z } =/= (/) ) ) -> ( ( b e. x /\ a e. x ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) | 
						
							| 79 | 38 78 | syl5 |  |-  ( ( w We A /\ x e. On ) -> ( A. y e. x H =/= (/) -> ( ( b e. x /\ a e. x ) -> ( ( ( F ` b ) = s /\ ( F ` a ) = r ) -> ( s R r \/ s = r \/ r R s ) ) ) ) ) | 
						
							| 80 | 79 | imp4b |  |-  ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( s R r \/ s = r \/ r R s ) ) ) | 
						
							| 81 | 80 | exlimdvv |  |-  ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( E. b E. a ( ( b e. x /\ a e. x ) /\ ( ( F ` b ) = s /\ ( F ` a ) = r ) ) -> ( s R r \/ s = r \/ r R s ) ) ) | 
						
							| 82 | 24 81 | syl5 |  |-  ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( ( s e. ( F " x ) /\ r e. ( F " x ) ) -> ( s R r \/ s = r \/ r R s ) ) ) | 
						
							| 83 | 82 | ralrimivv |  |-  ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) | 
						
							| 84 | 7 83 | jca2 |  |-  ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> ( R Po ( F " x ) /\ A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) ) ) | 
						
							| 85 |  | df-so |  |-  ( R Or ( F " x ) <-> ( R Po ( F " x ) /\ A. s e. ( F " x ) A. r e. ( F " x ) ( s R r \/ s = r \/ r R s ) ) ) | 
						
							| 86 | 84 85 | imbitrrdi |  |-  ( R Po A -> ( ( ( w We A /\ x e. On ) /\ A. y e. x H =/= (/) ) -> R Or ( F " x ) ) ) |