| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zprodn0.1 | 
							 |-  Z = ( ZZ>= ` M )  | 
						
						
							| 2 | 
							
								
							 | 
							zprodn0.2 | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							zprodn0.3 | 
							 |-  ( ph -> X =/= 0 )  | 
						
						
							| 4 | 
							
								
							 | 
							zprodn0.4 | 
							 |-  ( ph -> seq M ( x. , F ) ~~> X )  | 
						
						
							| 5 | 
							
								
							 | 
							zprodn0.5 | 
							 |-  ( ph -> A C_ Z )  | 
						
						
							| 6 | 
							
								
							 | 
							zprodn0.6 | 
							 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 1 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							zprodn0.7 | 
							 |-  ( ( ph /\ k e. A ) -> B e. CC )  | 
						
						
							| 8 | 
							
								1 2 4 3
							 | 
							ntrivcvgn0 | 
							 |-  ( ph -> E. m e. Z E. x ( x =/= 0 /\ seq m ( x. , F ) ~~> x ) )  | 
						
						
							| 9 | 
							
								1 2 8 5 6 7
							 | 
							zprod | 
							 |-  ( ph -> prod_ k e. A B = ( ~~> ` seq M ( x. , F ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fclim | 
							 |-  ~~> : dom ~~> --> CC  | 
						
						
							| 11 | 
							
								
							 | 
							ffun | 
							 |-  ( ~~> : dom ~~> --> CC -> Fun ~~> )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							ax-mp | 
							 |-  Fun ~~>  | 
						
						
							| 13 | 
							
								
							 | 
							funbrfv | 
							 |-  ( Fun ~~> -> ( seq M ( x. , F ) ~~> X -> ( ~~> ` seq M ( x. , F ) ) = X ) )  | 
						
						
							| 14 | 
							
								12 4 13
							 | 
							mpsyl | 
							 |-  ( ph -> ( ~~> ` seq M ( x. , F ) ) = X )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							eqtrd | 
							 |-  ( ph -> prod_ k e. A B = X )  |