Step |
Hyp |
Ref |
Expression |
1 |
|
zprodn0.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
zprodn0.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
zprodn0.3 |
|- ( ph -> X =/= 0 ) |
4 |
|
zprodn0.4 |
|- ( ph -> seq M ( x. , F ) ~~> X ) |
5 |
|
zprodn0.5 |
|- ( ph -> A C_ Z ) |
6 |
|
zprodn0.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
7 |
|
zprodn0.7 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
8 |
1 2 4 3
|
ntrivcvgn0 |
|- ( ph -> E. m e. Z E. x ( x =/= 0 /\ seq m ( x. , F ) ~~> x ) ) |
9 |
1 2 8 5 6 7
|
zprod |
|- ( ph -> prod_ k e. A B = ( ~~> ` seq M ( x. , F ) ) ) |
10 |
|
fclim |
|- ~~> : dom ~~> --> CC |
11 |
|
ffun |
|- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
12 |
10 11
|
ax-mp |
|- Fun ~~> |
13 |
|
funbrfv |
|- ( Fun ~~> -> ( seq M ( x. , F ) ~~> X -> ( ~~> ` seq M ( x. , F ) ) = X ) ) |
14 |
12 4 13
|
mpsyl |
|- ( ph -> ( ~~> ` seq M ( x. , F ) ) = X ) |
15 |
9 14
|
eqtrd |
|- ( ph -> prod_ k e. A B = X ) |