Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002) (Proof shortened by Steven Nguyen, 23-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zq | |- ( A e. ZZ -> A e. QQ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 2 | 1 | div1d | |- ( A e. ZZ -> ( A / 1 ) = A ) |
| 3 | 1nn | |- 1 e. NN |
|
| 4 | znq | |- ( ( A e. ZZ /\ 1 e. NN ) -> ( A / 1 ) e. QQ ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. ZZ -> ( A / 1 ) e. QQ ) |
| 6 | 2 5 | eqeltrrd | |- ( A e. ZZ -> A e. QQ ) |