Metamath Proof Explorer


Theorem zred

Description: An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis zred.1
|- ( ph -> A e. ZZ )
Assertion zred
|- ( ph -> A e. RR )

Proof

Step Hyp Ref Expression
1 zred.1
 |-  ( ph -> A e. ZZ )
2 zssre
 |-  ZZ C_ RR
3 2 1 sselid
 |-  ( ph -> A e. RR )