Metamath Proof Explorer


Theorem zrei

Description: An integer is a real number. (Contributed by NM, 14-Jul-2005)

Ref Expression
Hypothesis zrei.1
|- A e. ZZ
Assertion zrei
|- A e. RR

Proof

Step Hyp Ref Expression
1 zrei.1
 |-  A e. ZZ
2 zre
 |-  ( A e. ZZ -> A e. RR )
3 1 2 ax-mp
 |-  A e. RR