Metamath Proof Explorer


Theorem zrh0

Description: Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses zrh0.l
|- L = ( ZRHom ` R )
zrh0.z
|- .0. = ( 0g ` R )
Assertion zrh0
|- ( R e. Ring -> ( L ` 0 ) = .0. )

Proof

Step Hyp Ref Expression
1 zrh0.l
 |-  L = ( ZRHom ` R )
2 zrh0.z
 |-  .0. = ( 0g ` R )
3 1 zrhrhm
 |-  ( R e. Ring -> L e. ( ZZring RingHom R ) )
4 rhmghm
 |-  ( L e. ( ZZring RingHom R ) -> L e. ( ZZring GrpHom R ) )
5 zring0
 |-  0 = ( 0g ` ZZring )
6 5 2 ghmid
 |-  ( L e. ( ZZring GrpHom R ) -> ( L ` 0 ) = .0. )
7 3 4 6 3syl
 |-  ( R e. Ring -> ( L ` 0 ) = .0. )