Description: Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrh0.l | |- L = ( ZRHom ` R ) |
|
zrh0.z | |- .0. = ( 0g ` R ) |
||
Assertion | zrh0 | |- ( R e. Ring -> ( L ` 0 ) = .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrh0.l | |- L = ( ZRHom ` R ) |
|
2 | zrh0.z | |- .0. = ( 0g ` R ) |
|
3 | 1 | zrhrhm | |- ( R e. Ring -> L e. ( ZZring RingHom R ) ) |
4 | rhmghm | |- ( L e. ( ZZring RingHom R ) -> L e. ( ZZring GrpHom R ) ) |
|
5 | zring0 | |- 0 = ( 0g ` ZZring ) |
|
6 | 5 2 | ghmid | |- ( L e. ( ZZring GrpHom R ) -> ( L ` 0 ) = .0. ) |
7 | 3 4 6 | 3syl | |- ( R e. Ring -> ( L ` 0 ) = .0. ) |