Description: Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrh0.l | |- L = ( ZRHom ` R ) |
|
| zrh0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | zrh0 | |- ( R e. Ring -> ( L ` 0 ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrh0.l | |- L = ( ZRHom ` R ) |
|
| 2 | zrh0.z | |- .0. = ( 0g ` R ) |
|
| 3 | 1 | zrhrhm | |- ( R e. Ring -> L e. ( ZZring RingHom R ) ) |
| 4 | rhmghm | |- ( L e. ( ZZring RingHom R ) -> L e. ( ZZring GrpHom R ) ) |
|
| 5 | zring0 | |- 0 = ( 0g ` ZZring ) |
|
| 6 | 5 2 | ghmid | |- ( L e. ( ZZring GrpHom R ) -> ( L ` 0 ) = .0. ) |
| 7 | 3 4 6 | 3syl | |- ( R e. Ring -> ( L ` 0 ) = .0. ) |