Metamath Proof Explorer


Theorem zrh1

Description: Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses zrh1.l
|- L = ( ZRHom ` R )
zrh1.o
|- .1. = ( 1r ` R )
Assertion zrh1
|- ( R e. Ring -> ( L ` 1 ) = .1. )

Proof

Step Hyp Ref Expression
1 zrh1.l
 |-  L = ( ZRHom ` R )
2 zrh1.o
 |-  .1. = ( 1r ` R )
3 1 zrhrhm
 |-  ( R e. Ring -> L e. ( ZZring RingHom R ) )
4 zring1
 |-  1 = ( 1r ` ZZring )
5 4 2 rhm1
 |-  ( L e. ( ZZring RingHom R ) -> ( L ` 1 ) = .1. )
6 3 5 syl
 |-  ( R e. Ring -> ( L ` 1 ) = .1. )