Metamath Proof Explorer


Theorem zrhcopsgnelbas

Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses zrhpsgnelbas.p
|- P = ( Base ` ( SymGrp ` N ) )
zrhpsgnelbas.s
|- S = ( pmSgn ` N )
zrhpsgnelbas.y
|- Y = ( ZRHom ` R )
Assertion zrhcopsgnelbas
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) e. ( Base ` R ) )

Proof

Step Hyp Ref Expression
1 zrhpsgnelbas.p
 |-  P = ( Base ` ( SymGrp ` N ) )
2 zrhpsgnelbas.s
 |-  S = ( pmSgn ` N )
3 zrhpsgnelbas.y
 |-  Y = ( ZRHom ` R )
4 1 2 cofipsgn
 |-  ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) )
5 4 3adant1
 |-  ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) )
6 1 2 3 zrhpsgnelbas
 |-  ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) )
7 5 6 eqeltrd
 |-  ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) e. ( Base ` R ) )