Step |
Hyp |
Ref |
Expression |
1 |
|
zrhval.l |
|- L = ( ZRHom ` R ) |
2 |
|
zrhval2.m |
|- .x. = ( .g ` R ) |
3 |
|
zrhval2.1 |
|- .1. = ( 1r ` R ) |
4 |
1 2 3
|
zrhval2 |
|- ( R e. Ring -> L = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
5 |
4
|
fveq1d |
|- ( R e. Ring -> ( L ` N ) = ( ( n e. ZZ |-> ( n .x. .1. ) ) ` N ) ) |
6 |
|
oveq1 |
|- ( n = N -> ( n .x. .1. ) = ( N .x. .1. ) ) |
7 |
|
eqid |
|- ( n e. ZZ |-> ( n .x. .1. ) ) = ( n e. ZZ |-> ( n .x. .1. ) ) |
8 |
|
ovex |
|- ( N .x. .1. ) e. _V |
9 |
6 7 8
|
fvmpt |
|- ( N e. ZZ -> ( ( n e. ZZ |-> ( n .x. .1. ) ) ` N ) = ( N .x. .1. ) ) |
10 |
5 9
|
sylan9eq |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( L ` N ) = ( N .x. .1. ) ) |