Step |
Hyp |
Ref |
Expression |
1 |
|
zrhpsgnelbas.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
zrhpsgnelbas.s |
|- S = ( pmSgn ` N ) |
3 |
|
zrhpsgnelbas.y |
|- Y = ( ZRHom ` R ) |
4 |
1 2
|
psgnran |
|- ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |
5 |
4
|
3adant1 |
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |
6 |
|
elpri |
|- ( ( S ` Q ) e. { 1 , -u 1 } -> ( ( S ` Q ) = 1 \/ ( S ` Q ) = -u 1 ) ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
3 7
|
zrh1 |
|- ( R e. Ring -> ( Y ` 1 ) = ( 1r ` R ) ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
9 7
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
11 |
8 10
|
eqeltrd |
|- ( R e. Ring -> ( Y ` 1 ) e. ( Base ` R ) ) |
12 |
11
|
3ad2ant1 |
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` 1 ) e. ( Base ` R ) ) |
13 |
|
fveq2 |
|- ( ( S ` Q ) = 1 -> ( Y ` ( S ` Q ) ) = ( Y ` 1 ) ) |
14 |
13
|
eleq1d |
|- ( ( S ` Q ) = 1 -> ( ( Y ` ( S ` Q ) ) e. ( Base ` R ) <-> ( Y ` 1 ) e. ( Base ` R ) ) ) |
15 |
12 14
|
syl5ibr |
|- ( ( S ` Q ) = 1 -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
16 |
|
neg1z |
|- -u 1 e. ZZ |
17 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
18 |
3 17 7
|
zrhmulg |
|- ( ( R e. Ring /\ -u 1 e. ZZ ) -> ( Y ` -u 1 ) = ( -u 1 ( .g ` R ) ( 1r ` R ) ) ) |
19 |
16 18
|
mpan2 |
|- ( R e. Ring -> ( Y ` -u 1 ) = ( -u 1 ( .g ` R ) ( 1r ` R ) ) ) |
20 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
21 |
16
|
a1i |
|- ( R e. Ring -> -u 1 e. ZZ ) |
22 |
9 17 20 21 10
|
mulgcld |
|- ( R e. Ring -> ( -u 1 ( .g ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
23 |
19 22
|
eqeltrd |
|- ( R e. Ring -> ( Y ` -u 1 ) e. ( Base ` R ) ) |
24 |
23
|
3ad2ant1 |
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` -u 1 ) e. ( Base ` R ) ) |
25 |
|
fveq2 |
|- ( ( S ` Q ) = -u 1 -> ( Y ` ( S ` Q ) ) = ( Y ` -u 1 ) ) |
26 |
25
|
eleq1d |
|- ( ( S ` Q ) = -u 1 -> ( ( Y ` ( S ` Q ) ) e. ( Base ` R ) <-> ( Y ` -u 1 ) e. ( Base ` R ) ) ) |
27 |
24 26
|
syl5ibr |
|- ( ( S ` Q ) = -u 1 -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
28 |
15 27
|
jaoi |
|- ( ( ( S ` Q ) = 1 \/ ( S ` Q ) = -u 1 ) -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
29 |
6 28
|
syl |
|- ( ( S ` Q ) e. { 1 , -u 1 } -> ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) ) |
30 |
5 29
|
mpcom |
|- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) |