| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhpsgnevpm.y |
|- Y = ( ZRHom ` R ) |
| 2 |
|
zrhpsgnevpm.s |
|- S = ( pmSgn ` N ) |
| 3 |
|
zrhpsgnevpm.o |
|- .1. = ( 1r ` R ) |
| 4 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
| 5 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 6 |
4 2 5
|
psgnghm2 |
|- ( N e. Fin -> S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 7 |
|
eqid |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
| 8 |
|
eqid |
|- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 9 |
7 8
|
ghmf |
|- ( S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> S : ( Base ` ( SymGrp ` N ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 10 |
6 9
|
syl |
|- ( N e. Fin -> S : ( Base ` ( SymGrp ` N ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> S : ( Base ` ( SymGrp ` N ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 12 |
4 7
|
evpmss |
|- ( pmEven ` N ) C_ ( Base ` ( SymGrp ` N ) ) |
| 13 |
12
|
sseli |
|- ( F e. ( pmEven ` N ) -> F e. ( Base ` ( SymGrp ` N ) ) ) |
| 14 |
13
|
3ad2ant3 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> F e. ( Base ` ( SymGrp ` N ) ) ) |
| 15 |
|
fvco3 |
|- ( ( S : ( Base ` ( SymGrp ` N ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
| 16 |
11 14 15
|
syl2anc |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
| 17 |
4 7 2
|
psgnevpm |
|- ( ( N e. Fin /\ F e. ( pmEven ` N ) ) -> ( S ` F ) = 1 ) |
| 18 |
17
|
3adant1 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( S ` F ) = 1 ) |
| 19 |
18
|
fveq2d |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( Y ` ( S ` F ) ) = ( Y ` 1 ) ) |
| 20 |
1 3
|
zrh1 |
|- ( R e. Ring -> ( Y ` 1 ) = .1. ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( Y ` 1 ) = .1. ) |
| 22 |
16 19 21
|
3eqtrd |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) -> ( ( Y o. S ) ` F ) = .1. ) |