| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrhpsgninv.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | zrhpsgninv.y |  |-  Y = ( ZRHom ` R ) | 
						
							| 3 |  | zrhpsgninv.s |  |-  S = ( pmSgn ` N ) | 
						
							| 4 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 5 | 4 3 1 | psgninv |  |-  ( ( N e. Fin /\ F e. P ) -> ( S ` `' F ) = ( S ` F ) ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( S ` `' F ) = ( S ` F ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( Y ` ( S ` `' F ) ) = ( Y ` ( S ` F ) ) ) | 
						
							| 8 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 9 | 4 3 8 | psgnghm2 |  |-  ( N e. Fin -> S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 11 | 1 10 | ghmf |  |-  ( S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 12 | 9 11 | syl |  |-  ( N e. Fin -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 13 | 12 | 3ad2ant2 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 14 |  | eqid |  |-  ( invg ` ( SymGrp ` N ) ) = ( invg ` ( SymGrp ` N ) ) | 
						
							| 15 | 4 1 14 | symginv |  |-  ( F e. P -> ( ( invg ` ( SymGrp ` N ) ) ` F ) = `' F ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) = `' F ) | 
						
							| 17 | 4 | symggrp |  |-  ( N e. Fin -> ( SymGrp ` N ) e. Grp ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( SymGrp ` N ) e. Grp ) | 
						
							| 19 |  | simp3 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> F e. P ) | 
						
							| 20 | 1 14 | grpinvcl |  |-  ( ( ( SymGrp ` N ) e. Grp /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) e. P ) | 
						
							| 21 | 18 19 20 | syl2anc |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) e. P ) | 
						
							| 22 | 16 21 | eqeltrrd |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> `' F e. P ) | 
						
							| 23 |  | fvco3 |  |-  ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ `' F e. P ) -> ( ( Y o. S ) ` `' F ) = ( Y ` ( S ` `' F ) ) ) | 
						
							| 24 | 13 22 23 | syl2anc |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` `' F ) = ( Y ` ( S ` `' F ) ) ) | 
						
							| 25 |  | fvco3 |  |-  ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) | 
						
							| 26 | 13 19 25 | syl2anc |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) | 
						
							| 27 | 7 24 26 | 3eqtr4d |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` `' F ) = ( ( Y o. S ) ` F ) ) |