Step |
Hyp |
Ref |
Expression |
1 |
|
zrhpsgninv.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
zrhpsgninv.y |
|- Y = ( ZRHom ` R ) |
3 |
|
zrhpsgninv.s |
|- S = ( pmSgn ` N ) |
4 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
5 |
4 3 1
|
psgninv |
|- ( ( N e. Fin /\ F e. P ) -> ( S ` `' F ) = ( S ` F ) ) |
6 |
5
|
3adant1 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( S ` `' F ) = ( S ` F ) ) |
7 |
6
|
fveq2d |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( Y ` ( S ` `' F ) ) = ( Y ` ( S ` F ) ) ) |
8 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
9 |
4 3 8
|
psgnghm2 |
|- ( N e. Fin -> S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
10 |
|
eqid |
|- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
11 |
1 10
|
ghmf |
|- ( S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
12 |
9 11
|
syl |
|- ( N e. Fin -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
13 |
12
|
3ad2ant2 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
14 |
|
eqid |
|- ( invg ` ( SymGrp ` N ) ) = ( invg ` ( SymGrp ` N ) ) |
15 |
4 1 14
|
symginv |
|- ( F e. P -> ( ( invg ` ( SymGrp ` N ) ) ` F ) = `' F ) |
16 |
15
|
3ad2ant3 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) = `' F ) |
17 |
4
|
symggrp |
|- ( N e. Fin -> ( SymGrp ` N ) e. Grp ) |
18 |
17
|
3ad2ant2 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( SymGrp ` N ) e. Grp ) |
19 |
|
simp3 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> F e. P ) |
20 |
1 14
|
grpinvcl |
|- ( ( ( SymGrp ` N ) e. Grp /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) e. P ) |
21 |
18 19 20
|
syl2anc |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) e. P ) |
22 |
16 21
|
eqeltrrd |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> `' F e. P ) |
23 |
|
fvco3 |
|- ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ `' F e. P ) -> ( ( Y o. S ) ` `' F ) = ( Y ` ( S ` `' F ) ) ) |
24 |
13 22 23
|
syl2anc |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` `' F ) = ( Y ` ( S ` `' F ) ) ) |
25 |
|
fvco3 |
|- ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
26 |
13 19 25
|
syl2anc |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
27 |
7 24 26
|
3eqtr4d |
|- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` `' F ) = ( ( Y o. S ) ` F ) ) |