| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 2 |
1
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 3 |
|
eqid |
|- ( mulGrp ` ZZring ) = ( mulGrp ` ZZring ) |
| 4 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 5 |
3 4
|
rhmmhm |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` R ) ) ) |
| 6 |
2 5
|
syl |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` R ) ) ) |
| 7 |
|
eqid |
|- ( SymGrp ` A ) = ( SymGrp ` A ) |
| 8 |
|
eqid |
|- ( pmSgn ` A ) = ( pmSgn ` A ) |
| 9 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 10 |
7 8 9
|
psgnghm2 |
|- ( A e. Fin -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 11 |
|
ghmmhm |
|- ( ( pmSgn ` A ) e. ( ( SymGrp ` A ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 12 |
10 11
|
syl |
|- ( A e. Fin -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 13 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 14 |
13
|
cnmsgnsubg |
|- { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 15 |
|
subgsubm |
|- ( { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> { 1 , -u 1 } e. ( SubMnd ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) ) |
| 16 |
14 15
|
ax-mp |
|- { 1 , -u 1 } e. ( SubMnd ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 17 |
|
cnring |
|- CCfld e. Ring |
| 18 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 19 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 20 |
|
cndrng |
|- CCfld e. DivRing |
| 21 |
18 19 20
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 22 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 23 |
21 22
|
unitsubm |
|- ( CCfld e. Ring -> ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 24 |
13
|
subsubm |
|- ( ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) -> ( { 1 , -u 1 } e. ( SubMnd ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) <-> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) ) ) |
| 25 |
17 23 24
|
mp2b |
|- ( { 1 , -u 1 } e. ( SubMnd ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) <-> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) ) |
| 26 |
16 25
|
mpbi |
|- ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) |
| 27 |
26
|
simpli |
|- { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
| 28 |
|
1z |
|- 1 e. ZZ |
| 29 |
|
neg1z |
|- -u 1 e. ZZ |
| 30 |
|
prssi |
|- ( ( 1 e. ZZ /\ -u 1 e. ZZ ) -> { 1 , -u 1 } C_ ZZ ) |
| 31 |
28 29 30
|
mp2an |
|- { 1 , -u 1 } C_ ZZ |
| 32 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
| 33 |
22
|
subrgsubm |
|- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 34 |
|
zringmpg |
|- ( ( mulGrp ` CCfld ) |`s ZZ ) = ( mulGrp ` ZZring ) |
| 35 |
34
|
eqcomi |
|- ( mulGrp ` ZZring ) = ( ( mulGrp ` CCfld ) |`s ZZ ) |
| 36 |
35
|
subsubm |
|- ( ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) -> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` ZZring ) ) <-> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ZZ ) ) ) |
| 37 |
32 33 36
|
mp2b |
|- ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` ZZring ) ) <-> ( { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ { 1 , -u 1 } C_ ZZ ) ) |
| 38 |
27 31 37
|
mpbir2an |
|- { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` ZZring ) ) |
| 39 |
|
zex |
|- ZZ e. _V |
| 40 |
|
ressabs |
|- ( ( ZZ e. _V /\ { 1 , -u 1 } C_ ZZ ) -> ( ( ( mulGrp ` CCfld ) |`s ZZ ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 41 |
39 31 40
|
mp2an |
|- ( ( ( mulGrp ` CCfld ) |`s ZZ ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 42 |
34
|
oveq1i |
|- ( ( ( mulGrp ` CCfld ) |`s ZZ ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` ZZring ) |`s { 1 , -u 1 } ) |
| 43 |
41 42
|
eqtr3i |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` ZZring ) |`s { 1 , -u 1 } ) |
| 44 |
43
|
resmhm2 |
|- ( ( ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ { 1 , -u 1 } e. ( SubMnd ` ( mulGrp ` ZZring ) ) ) -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` ZZring ) ) ) |
| 45 |
12 38 44
|
sylancl |
|- ( A e. Fin -> ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` ZZring ) ) ) |
| 46 |
|
mhmco |
|- ( ( ( ZRHom ` R ) e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` R ) ) /\ ( pmSgn ` A ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` ZZring ) ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` A ) ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` R ) ) ) |
| 47 |
6 45 46
|
syl2an |
|- ( ( R e. Ring /\ A e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` A ) ) e. ( ( SymGrp ` A ) MndHom ( mulGrp ` R ) ) ) |