| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrhpsgnevpm.y |  |-  Y = ( ZRHom ` R ) | 
						
							| 2 |  | zrhpsgnevpm.s |  |-  S = ( pmSgn ` N ) | 
						
							| 3 |  | zrhpsgnevpm.o |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | zrhpsgnodpm.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 5 |  | zrhpsgnodpm.i |  |-  I = ( invg ` R ) | 
						
							| 6 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 7 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 8 | 6 2 7 | psgnghm2 |  |-  ( N e. Fin -> S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 10 | 4 9 | ghmf |  |-  ( S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( N e. Fin -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 12 | 11 | 3ad2ant2 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 13 |  | eldifi |  |-  ( F e. ( P \ ( pmEven ` N ) ) -> F e. P ) | 
						
							| 14 | 13 | 3ad2ant3 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> F e. P ) | 
						
							| 15 |  | fvco3 |  |-  ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) | 
						
							| 16 | 12 14 15 | syl2anc |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) | 
						
							| 17 | 6 4 2 | psgnodpm |  |-  ( ( N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( S ` F ) = -u 1 ) | 
						
							| 18 | 17 | 3adant1 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( S ` F ) = -u 1 ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( Y ` ( S ` F ) ) = ( Y ` -u 1 ) ) | 
						
							| 20 | 1 | zrhrhm |  |-  ( R e. Ring -> Y e. ( ZZring RingHom R ) ) | 
						
							| 21 |  | rhmghm |  |-  ( Y e. ( ZZring RingHom R ) -> Y e. ( ZZring GrpHom R ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( R e. Ring -> Y e. ( ZZring GrpHom R ) ) | 
						
							| 23 |  | 1z |  |-  1 e. ZZ | 
						
							| 24 | 23 | a1i |  |-  ( R e. Ring -> 1 e. ZZ ) | 
						
							| 25 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 26 |  | eqid |  |-  ( invg ` ZZring ) = ( invg ` ZZring ) | 
						
							| 27 | 25 26 5 | ghminv |  |-  ( ( Y e. ( ZZring GrpHom R ) /\ 1 e. ZZ ) -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( I ` ( Y ` 1 ) ) ) | 
						
							| 28 | 22 24 27 | syl2anc |  |-  ( R e. Ring -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( I ` ( Y ` 1 ) ) ) | 
						
							| 29 |  | zringinvg |  |-  ( 1 e. ZZ -> -u 1 = ( ( invg ` ZZring ) ` 1 ) ) | 
						
							| 30 | 23 29 | ax-mp |  |-  -u 1 = ( ( invg ` ZZring ) ` 1 ) | 
						
							| 31 | 30 | eqcomi |  |-  ( ( invg ` ZZring ) ` 1 ) = -u 1 | 
						
							| 32 | 31 | fveq2i |  |-  ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( Y ` -u 1 ) | 
						
							| 33 | 32 | a1i |  |-  ( R e. Ring -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( Y ` -u 1 ) ) | 
						
							| 34 | 1 3 | zrh1 |  |-  ( R e. Ring -> ( Y ` 1 ) = .1. ) | 
						
							| 35 | 34 | fveq2d |  |-  ( R e. Ring -> ( I ` ( Y ` 1 ) ) = ( I ` .1. ) ) | 
						
							| 36 | 28 33 35 | 3eqtr3d |  |-  ( R e. Ring -> ( Y ` -u 1 ) = ( I ` .1. ) ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( Y ` -u 1 ) = ( I ` .1. ) ) | 
						
							| 38 | 16 19 37 | 3eqtrd |  |-  ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( I ` .1. ) ) |