Step |
Hyp |
Ref |
Expression |
1 |
|
zrhpsgnevpm.y |
|- Y = ( ZRHom ` R ) |
2 |
|
zrhpsgnevpm.s |
|- S = ( pmSgn ` N ) |
3 |
|
zrhpsgnevpm.o |
|- .1. = ( 1r ` R ) |
4 |
|
zrhpsgnodpm.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
5 |
|
zrhpsgnodpm.i |
|- I = ( invg ` R ) |
6 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
7 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
8 |
6 2 7
|
psgnghm2 |
|- ( N e. Fin -> S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
9 |
|
eqid |
|- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
10 |
4 9
|
ghmf |
|- ( S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
11 |
8 10
|
syl |
|- ( N e. Fin -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
12 |
11
|
3ad2ant2 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
13 |
|
eldifi |
|- ( F e. ( P \ ( pmEven ` N ) ) -> F e. P ) |
14 |
13
|
3ad2ant3 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> F e. P ) |
15 |
|
fvco3 |
|- ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
16 |
12 14 15
|
syl2anc |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
17 |
6 4 2
|
psgnodpm |
|- ( ( N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( S ` F ) = -u 1 ) |
18 |
17
|
3adant1 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( S ` F ) = -u 1 ) |
19 |
18
|
fveq2d |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( Y ` ( S ` F ) ) = ( Y ` -u 1 ) ) |
20 |
1
|
zrhrhm |
|- ( R e. Ring -> Y e. ( ZZring RingHom R ) ) |
21 |
|
rhmghm |
|- ( Y e. ( ZZring RingHom R ) -> Y e. ( ZZring GrpHom R ) ) |
22 |
20 21
|
syl |
|- ( R e. Ring -> Y e. ( ZZring GrpHom R ) ) |
23 |
|
1z |
|- 1 e. ZZ |
24 |
23
|
a1i |
|- ( R e. Ring -> 1 e. ZZ ) |
25 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
26 |
|
eqid |
|- ( invg ` ZZring ) = ( invg ` ZZring ) |
27 |
25 26 5
|
ghminv |
|- ( ( Y e. ( ZZring GrpHom R ) /\ 1 e. ZZ ) -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( I ` ( Y ` 1 ) ) ) |
28 |
22 24 27
|
syl2anc |
|- ( R e. Ring -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( I ` ( Y ` 1 ) ) ) |
29 |
|
zringinvg |
|- ( 1 e. ZZ -> -u 1 = ( ( invg ` ZZring ) ` 1 ) ) |
30 |
23 29
|
ax-mp |
|- -u 1 = ( ( invg ` ZZring ) ` 1 ) |
31 |
30
|
eqcomi |
|- ( ( invg ` ZZring ) ` 1 ) = -u 1 |
32 |
31
|
fveq2i |
|- ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( Y ` -u 1 ) |
33 |
32
|
a1i |
|- ( R e. Ring -> ( Y ` ( ( invg ` ZZring ) ` 1 ) ) = ( Y ` -u 1 ) ) |
34 |
1 3
|
zrh1 |
|- ( R e. Ring -> ( Y ` 1 ) = .1. ) |
35 |
34
|
fveq2d |
|- ( R e. Ring -> ( I ` ( Y ` 1 ) ) = ( I ` .1. ) ) |
36 |
28 33 35
|
3eqtr3d |
|- ( R e. Ring -> ( Y ` -u 1 ) = ( I ` .1. ) ) |
37 |
36
|
3ad2ant1 |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( Y ` -u 1 ) = ( I ` .1. ) ) |
38 |
16 19 37
|
3eqtrd |
|- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \ ( pmEven ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( I ` .1. ) ) |