Step |
Hyp |
Ref |
Expression |
1 |
|
zrhval.l |
|- L = ( ZRHom ` R ) |
2 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
3 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) = ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) |
4 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
5 |
2 3 4
|
mulgrhm2 |
|- ( R e. Ring -> ( ZZring RingHom R ) = { ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) } ) |
6 |
1 2 4
|
zrhval2 |
|- ( R e. Ring -> L = ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) ) |
7 |
6
|
sneqd |
|- ( R e. Ring -> { L } = { ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) } ) |
8 |
5 7
|
eqtr4d |
|- ( R e. Ring -> ( ZZring RingHom R ) = { L } ) |
9 |
8
|
eleq2d |
|- ( R e. Ring -> ( F e. ( ZZring RingHom R ) <-> F e. { L } ) ) |
10 |
1
|
fvexi |
|- L e. _V |
11 |
10
|
elsn2 |
|- ( F e. { L } <-> F = L ) |
12 |
9 11
|
bitrdi |
|- ( R e. Ring -> ( F e. ( ZZring RingHom R ) <-> F = L ) ) |