| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zrhval.l | 
							 |-  L = ( ZRHom ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							 |-  ( .g ` R ) = ( .g ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) = ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` R ) = ( 1r ` R )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							mulgrhm2 | 
							 |-  ( R e. Ring -> ( ZZring RingHom R ) = { ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) } ) | 
						
						
							| 6 | 
							
								1 2 4
							 | 
							zrhval2 | 
							 |-  ( R e. Ring -> L = ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							sneqd | 
							 |-  ( R e. Ring -> { L } = { ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) } ) | 
						
						
							| 8 | 
							
								5 7
							 | 
							eqtr4d | 
							 |-  ( R e. Ring -> ( ZZring RingHom R ) = { L } ) | 
						
						
							| 9 | 
							
								8
							 | 
							eleq2d | 
							 |-  ( R e. Ring -> ( F e. ( ZZring RingHom R ) <-> F e. { L } ) ) | 
						
						
							| 10 | 
							
								1
							 | 
							fvexi | 
							 |-  L e. _V  | 
						
						
							| 11 | 
							
								10
							 | 
							elsn2 | 
							 |-  ( F e. { L } <-> F = L ) | 
						
						
							| 12 | 
							
								9 11
							 | 
							bitrdi | 
							 |-  ( R e. Ring -> ( F e. ( ZZring RingHom R ) <-> F = L ) )  |