Step |
Hyp |
Ref |
Expression |
1 |
|
zrhval.l |
|- L = ( ZRHom ` R ) |
2 |
|
oveq2 |
|- ( r = R -> ( ZZring RingHom r ) = ( ZZring RingHom R ) ) |
3 |
2
|
unieqd |
|- ( r = R -> U. ( ZZring RingHom r ) = U. ( ZZring RingHom R ) ) |
4 |
|
df-zrh |
|- ZRHom = ( r e. _V |-> U. ( ZZring RingHom r ) ) |
5 |
|
ovex |
|- ( ZZring RingHom R ) e. _V |
6 |
5
|
uniex |
|- U. ( ZZring RingHom R ) e. _V |
7 |
3 4 6
|
fvmpt |
|- ( R e. _V -> ( ZRHom ` R ) = U. ( ZZring RingHom R ) ) |
8 |
|
fvprc |
|- ( -. R e. _V -> ( ZRHom ` R ) = (/) ) |
9 |
|
dfrhm2 |
|- RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) |
10 |
9
|
reldmmpo |
|- Rel dom RingHom |
11 |
10
|
ovprc2 |
|- ( -. R e. _V -> ( ZZring RingHom R ) = (/) ) |
12 |
11
|
unieqd |
|- ( -. R e. _V -> U. ( ZZring RingHom R ) = U. (/) ) |
13 |
|
uni0 |
|- U. (/) = (/) |
14 |
12 13
|
eqtrdi |
|- ( -. R e. _V -> U. ( ZZring RingHom R ) = (/) ) |
15 |
8 14
|
eqtr4d |
|- ( -. R e. _V -> ( ZRHom ` R ) = U. ( ZZring RingHom R ) ) |
16 |
7 15
|
pm2.61i |
|- ( ZRHom ` R ) = U. ( ZZring RingHom R ) |
17 |
1 16
|
eqtri |
|- L = U. ( ZZring RingHom R ) |