Step |
Hyp |
Ref |
Expression |
1 |
|
zrhval.l |
|- L = ( ZRHom ` R ) |
2 |
|
zrhval2.m |
|- .x. = ( .g ` R ) |
3 |
|
zrhval2.1 |
|- .1. = ( 1r ` R ) |
4 |
1
|
zrhval |
|- L = U. ( ZZring RingHom R ) |
5 |
|
eqid |
|- ( n e. ZZ |-> ( n .x. .1. ) ) = ( n e. ZZ |-> ( n .x. .1. ) ) |
6 |
2 5 3
|
mulgrhm2 |
|- ( R e. Ring -> ( ZZring RingHom R ) = { ( n e. ZZ |-> ( n .x. .1. ) ) } ) |
7 |
6
|
unieqd |
|- ( R e. Ring -> U. ( ZZring RingHom R ) = U. { ( n e. ZZ |-> ( n .x. .1. ) ) } ) |
8 |
|
zex |
|- ZZ e. _V |
9 |
8
|
mptex |
|- ( n e. ZZ |-> ( n .x. .1. ) ) e. _V |
10 |
9
|
unisn |
|- U. { ( n e. ZZ |-> ( n .x. .1. ) ) } = ( n e. ZZ |-> ( n .x. .1. ) ) |
11 |
7 10
|
eqtrdi |
|- ( R e. Ring -> U. ( ZZring RingHom R ) = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
12 |
4 11
|
eqtrid |
|- ( R e. Ring -> L = ( n e. ZZ |-> ( n .x. .1. ) ) ) |