Metamath Proof Explorer


Theorem zring0

Description: The neutral element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion zring0
|- 0 = ( 0g ` ZZring )

Proof

Step Hyp Ref Expression
1 cncrng
 |-  CCfld e. CRing
2 crngring
 |-  ( CCfld e. CRing -> CCfld e. Ring )
3 ringmnd
 |-  ( CCfld e. Ring -> CCfld e. Mnd )
4 1 2 3 mp2b
 |-  CCfld e. Mnd
5 0z
 |-  0 e. ZZ
6 zsscn
 |-  ZZ C_ CC
7 df-zring
 |-  ZZring = ( CCfld |`s ZZ )
8 cnfldbas
 |-  CC = ( Base ` CCfld )
9 cnfld0
 |-  0 = ( 0g ` CCfld )
10 7 8 9 ress0g
 |-  ( ( CCfld e. Mnd /\ 0 e. ZZ /\ ZZ C_ CC ) -> 0 = ( 0g ` ZZring ) )
11 4 5 6 10 mp3an
 |-  0 = ( 0g ` ZZring )