Step |
Hyp |
Ref |
Expression |
1 |
|
zringcrng |
|- ZZring e. CRing |
2 |
|
zringnzr |
|- ZZring e. NzRing |
3 |
|
eldifi |
|- ( x e. ( ZZ \ { 0 } ) -> x e. ZZ ) |
4 |
3
|
ad2antrr |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> x e. ZZ ) |
5 |
4
|
zcnd |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> x e. CC ) |
6 |
|
simplr |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> y e. ZZ ) |
7 |
6
|
zcnd |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> y e. CC ) |
8 |
|
simpr |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> ( x x. y ) = 0 ) |
9 |
|
mul0or |
|- ( ( x e. CC /\ y e. CC ) -> ( ( x x. y ) = 0 <-> ( x = 0 \/ y = 0 ) ) ) |
10 |
9
|
biimpa |
|- ( ( ( x e. CC /\ y e. CC ) /\ ( x x. y ) = 0 ) -> ( x = 0 \/ y = 0 ) ) |
11 |
5 7 8 10
|
syl21anc |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> ( x = 0 \/ y = 0 ) ) |
12 |
|
eldifsni |
|- ( x e. ( ZZ \ { 0 } ) -> x =/= 0 ) |
13 |
12
|
ad2antrr |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> x =/= 0 ) |
14 |
13
|
neneqd |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> -. x = 0 ) |
15 |
11 14
|
orcnd |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> y = 0 ) |
16 |
15
|
ex |
|- ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) -> ( ( x x. y ) = 0 -> y = 0 ) ) |
17 |
16
|
ralrimiva |
|- ( x e. ( ZZ \ { 0 } ) -> A. y e. ZZ ( ( x x. y ) = 0 -> y = 0 ) ) |
18 |
|
eqid |
|- ( RLReg ` ZZring ) = ( RLReg ` ZZring ) |
19 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
20 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
21 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
22 |
18 19 20 21
|
isrrg |
|- ( x e. ( RLReg ` ZZring ) <-> ( x e. ZZ /\ A. y e. ZZ ( ( x x. y ) = 0 -> y = 0 ) ) ) |
23 |
3 17 22
|
sylanbrc |
|- ( x e. ( ZZ \ { 0 } ) -> x e. ( RLReg ` ZZring ) ) |
24 |
23
|
ssriv |
|- ( ZZ \ { 0 } ) C_ ( RLReg ` ZZring ) |
25 |
19 18 21
|
isdomn2 |
|- ( ZZring e. Domn <-> ( ZZring e. NzRing /\ ( ZZ \ { 0 } ) C_ ( RLReg ` ZZring ) ) ) |
26 |
2 24 25
|
mpbir2an |
|- ZZring e. Domn |
27 |
|
isidom |
|- ( ZZring e. IDomn <-> ( ZZring e. CRing /\ ZZring e. Domn ) ) |
28 |
1 26 27
|
mpbir2an |
|- ZZring e. IDomn |