| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 2 | 1 | negidd |  |-  ( A e. ZZ -> ( A + -u A ) = 0 ) | 
						
							| 3 |  | zringgrp |  |-  ZZring e. Grp | 
						
							| 4 |  | id |  |-  ( A e. ZZ -> A e. ZZ ) | 
						
							| 5 |  | znegcl |  |-  ( A e. ZZ -> -u A e. ZZ ) | 
						
							| 6 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 7 |  | zringplusg |  |-  + = ( +g ` ZZring ) | 
						
							| 8 |  | zring0 |  |-  0 = ( 0g ` ZZring ) | 
						
							| 9 |  | eqid |  |-  ( invg ` ZZring ) = ( invg ` ZZring ) | 
						
							| 10 | 6 7 8 9 | grpinvid1 |  |-  ( ( ZZring e. Grp /\ A e. ZZ /\ -u A e. ZZ ) -> ( ( ( invg ` ZZring ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) | 
						
							| 11 | 3 4 5 10 | mp3an2i |  |-  ( A e. ZZ -> ( ( ( invg ` ZZring ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) | 
						
							| 12 | 2 11 | mpbird |  |-  ( A e. ZZ -> ( ( invg ` ZZring ) ` A ) = -u A ) | 
						
							| 13 | 12 | eqcomd |  |-  ( A e. ZZ -> -u A = ( ( invg ` ZZring ) ` A ) ) |