Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
2 |
1
|
negidd |
|- ( A e. ZZ -> ( A + -u A ) = 0 ) |
3 |
|
zringgrp |
|- ZZring e. Grp |
4 |
|
id |
|- ( A e. ZZ -> A e. ZZ ) |
5 |
|
znegcl |
|- ( A e. ZZ -> -u A e. ZZ ) |
6 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
7 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
8 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
9 |
|
eqid |
|- ( invg ` ZZring ) = ( invg ` ZZring ) |
10 |
6 7 8 9
|
grpinvid1 |
|- ( ( ZZring e. Grp /\ A e. ZZ /\ -u A e. ZZ ) -> ( ( ( invg ` ZZring ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
11 |
3 4 5 10
|
mp3an2i |
|- ( A e. ZZ -> ( ( ( invg ` ZZring ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
12 |
2 11
|
mpbird |
|- ( A e. ZZ -> ( ( invg ` ZZring ) ` A ) = -u A ) |
13 |
12
|
eqcomd |
|- ( A e. ZZ -> -u A = ( ( invg ` ZZring ) ` A ) ) |