Step |
Hyp |
Ref |
Expression |
1 |
|
zringring |
|- ZZring e. Ring |
2 |
|
eleq1 |
|- ( x = { 0 } -> ( x e. ( LPIdeal ` ZZring ) <-> { 0 } e. ( LPIdeal ` ZZring ) ) ) |
3 |
|
simpl |
|- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> x e. ( LIdeal ` ZZring ) ) |
4 |
|
simpr |
|- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> x =/= { 0 } ) |
5 |
|
eqid |
|- inf ( ( x i^i NN ) , RR , < ) = inf ( ( x i^i NN ) , RR , < ) |
6 |
3 4 5
|
zringlpirlem2 |
|- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> inf ( ( x i^i NN ) , RR , < ) e. x ) |
7 |
|
simpll |
|- ( ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) /\ z e. x ) -> x e. ( LIdeal ` ZZring ) ) |
8 |
|
simplr |
|- ( ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) /\ z e. x ) -> x =/= { 0 } ) |
9 |
|
simpr |
|- ( ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) /\ z e. x ) -> z e. x ) |
10 |
7 8 5 9
|
zringlpirlem3 |
|- ( ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) /\ z e. x ) -> inf ( ( x i^i NN ) , RR , < ) || z ) |
11 |
10
|
ralrimiva |
|- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> A. z e. x inf ( ( x i^i NN ) , RR , < ) || z ) |
12 |
|
breq1 |
|- ( y = inf ( ( x i^i NN ) , RR , < ) -> ( y || z <-> inf ( ( x i^i NN ) , RR , < ) || z ) ) |
13 |
12
|
ralbidv |
|- ( y = inf ( ( x i^i NN ) , RR , < ) -> ( A. z e. x y || z <-> A. z e. x inf ( ( x i^i NN ) , RR , < ) || z ) ) |
14 |
13
|
rspcev |
|- ( ( inf ( ( x i^i NN ) , RR , < ) e. x /\ A. z e. x inf ( ( x i^i NN ) , RR , < ) || z ) -> E. y e. x A. z e. x y || z ) |
15 |
6 11 14
|
syl2anc |
|- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> E. y e. x A. z e. x y || z ) |
16 |
|
eqid |
|- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
17 |
|
eqid |
|- ( LPIdeal ` ZZring ) = ( LPIdeal ` ZZring ) |
18 |
|
dvdsrzring |
|- || = ( ||r ` ZZring ) |
19 |
16 17 18
|
lpigen |
|- ( ( ZZring e. Ring /\ x e. ( LIdeal ` ZZring ) ) -> ( x e. ( LPIdeal ` ZZring ) <-> E. y e. x A. z e. x y || z ) ) |
20 |
1 19
|
mpan |
|- ( x e. ( LIdeal ` ZZring ) -> ( x e. ( LPIdeal ` ZZring ) <-> E. y e. x A. z e. x y || z ) ) |
21 |
20
|
adantr |
|- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> ( x e. ( LPIdeal ` ZZring ) <-> E. y e. x A. z e. x y || z ) ) |
22 |
15 21
|
mpbird |
|- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> x e. ( LPIdeal ` ZZring ) ) |
23 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
24 |
17 23
|
lpi0 |
|- ( ZZring e. Ring -> { 0 } e. ( LPIdeal ` ZZring ) ) |
25 |
1 24
|
mp1i |
|- ( x e. ( LIdeal ` ZZring ) -> { 0 } e. ( LPIdeal ` ZZring ) ) |
26 |
2 22 25
|
pm2.61ne |
|- ( x e. ( LIdeal ` ZZring ) -> x e. ( LPIdeal ` ZZring ) ) |
27 |
26
|
ssriv |
|- ( LIdeal ` ZZring ) C_ ( LPIdeal ` ZZring ) |
28 |
17 16
|
islpir2 |
|- ( ZZring e. LPIR <-> ( ZZring e. Ring /\ ( LIdeal ` ZZring ) C_ ( LPIdeal ` ZZring ) ) ) |
29 |
1 27 28
|
mpbir2an |
|- ZZring e. LPIR |