Step |
Hyp |
Ref |
Expression |
1 |
|
zringlpirlem.i |
|- ( ph -> I e. ( LIdeal ` ZZring ) ) |
2 |
|
zringlpirlem.n0 |
|- ( ph -> I =/= { 0 } ) |
3 |
|
simplr |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> a e. I ) |
4 |
|
eleq1 |
|- ( ( abs ` a ) = a -> ( ( abs ` a ) e. I <-> a e. I ) ) |
5 |
3 4
|
syl5ibrcom |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( ( abs ` a ) = a -> ( abs ` a ) e. I ) ) |
6 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
7 |
|
subrgsubg |
|- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) ) |
8 |
6 7
|
ax-mp |
|- ZZ e. ( SubGrp ` CCfld ) |
9 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
10 |
|
eqid |
|- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
11 |
9 10
|
lidlss |
|- ( I e. ( LIdeal ` ZZring ) -> I C_ ZZ ) |
12 |
1 11
|
syl |
|- ( ph -> I C_ ZZ ) |
13 |
12
|
sselda |
|- ( ( ph /\ a e. I ) -> a e. ZZ ) |
14 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
15 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
16 |
|
eqid |
|- ( invg ` ZZring ) = ( invg ` ZZring ) |
17 |
14 15 16
|
subginv |
|- ( ( ZZ e. ( SubGrp ` CCfld ) /\ a e. ZZ ) -> ( ( invg ` CCfld ) ` a ) = ( ( invg ` ZZring ) ` a ) ) |
18 |
8 13 17
|
sylancr |
|- ( ( ph /\ a e. I ) -> ( ( invg ` CCfld ) ` a ) = ( ( invg ` ZZring ) ` a ) ) |
19 |
13
|
zcnd |
|- ( ( ph /\ a e. I ) -> a e. CC ) |
20 |
|
cnfldneg |
|- ( a e. CC -> ( ( invg ` CCfld ) ` a ) = -u a ) |
21 |
19 20
|
syl |
|- ( ( ph /\ a e. I ) -> ( ( invg ` CCfld ) ` a ) = -u a ) |
22 |
18 21
|
eqtr3d |
|- ( ( ph /\ a e. I ) -> ( ( invg ` ZZring ) ` a ) = -u a ) |
23 |
|
zringring |
|- ZZring e. Ring |
24 |
1
|
adantr |
|- ( ( ph /\ a e. I ) -> I e. ( LIdeal ` ZZring ) ) |
25 |
|
simpr |
|- ( ( ph /\ a e. I ) -> a e. I ) |
26 |
10 16
|
lidlnegcl |
|- ( ( ZZring e. Ring /\ I e. ( LIdeal ` ZZring ) /\ a e. I ) -> ( ( invg ` ZZring ) ` a ) e. I ) |
27 |
23 24 25 26
|
mp3an2i |
|- ( ( ph /\ a e. I ) -> ( ( invg ` ZZring ) ` a ) e. I ) |
28 |
22 27
|
eqeltrrd |
|- ( ( ph /\ a e. I ) -> -u a e. I ) |
29 |
28
|
adantr |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> -u a e. I ) |
30 |
|
eleq1 |
|- ( ( abs ` a ) = -u a -> ( ( abs ` a ) e. I <-> -u a e. I ) ) |
31 |
29 30
|
syl5ibrcom |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( ( abs ` a ) = -u a -> ( abs ` a ) e. I ) ) |
32 |
13
|
zred |
|- ( ( ph /\ a e. I ) -> a e. RR ) |
33 |
32
|
absord |
|- ( ( ph /\ a e. I ) -> ( ( abs ` a ) = a \/ ( abs ` a ) = -u a ) ) |
34 |
33
|
adantr |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( ( abs ` a ) = a \/ ( abs ` a ) = -u a ) ) |
35 |
5 31 34
|
mpjaod |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( abs ` a ) e. I ) |
36 |
|
nnabscl |
|- ( ( a e. ZZ /\ a =/= 0 ) -> ( abs ` a ) e. NN ) |
37 |
13 36
|
sylan |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( abs ` a ) e. NN ) |
38 |
35 37
|
elind |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( abs ` a ) e. ( I i^i NN ) ) |
39 |
38
|
ne0d |
|- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( I i^i NN ) =/= (/) ) |
40 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
41 |
10 40
|
lidlnz |
|- ( ( ZZring e. Ring /\ I e. ( LIdeal ` ZZring ) /\ I =/= { 0 } ) -> E. a e. I a =/= 0 ) |
42 |
23 1 2 41
|
mp3an2i |
|- ( ph -> E. a e. I a =/= 0 ) |
43 |
39 42
|
r19.29a |
|- ( ph -> ( I i^i NN ) =/= (/) ) |